Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chin Med Assoc ; 87(8): 809-814, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888308

RESUMO

BACKGROUND: Orthoses play an important role in the conservative treatment of hallux valgus (HV) with different therapeutic effects. In this study, a new HV orthosis was developed using three-dimensional (3D) printing technology. In addition, its kinematic effect was evaluated using motion analysis. METHODS: Seventeen participants with an HV angle of >20° were included in the study. The first metatarsophalangeal abduction angle before and after the orthosis was measured statically. Subsequently, dynamic first metatarsophalangeal abduction, dorsiflexion angle and ground reaction force with and without the orthosis were recorded and calculated during walking using a Vicon motion analysis system and force plates. The patients' comfort scales were determined after the motion analysis. RESULTS: The angular corrections of the orthosis in the first metatarsophalangeal abduction were 14.6° and 6.3° under static and dynamic conditions, respectively. Reduced hallux dorsiflexion was observed with the orthosis in the early stance phase. However, no significant changes in ground reaction forces were observed. CONCLUSION: The results of our study confirm the potential of the 3D-printed HV orthosis in the static and dynamic correction of deformities while ensuring patient comfort with minimal impact on hallux kinematics, suggesting the potential of our design for long-term use.


Assuntos
Hallux Valgus , Impressão Tridimensional , Humanos , Hallux Valgus/terapia , Hallux Valgus/fisiopatologia , Fenômenos Biomecânicos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Órtoses do Pé , Aparelhos Ortopédicos
2.
Bioengineering (Basel) ; 9(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290531

RESUMO

Insoles play an important role in the conservative treatment of functional flat foot. The features of 3D-printed insoles are high customizability, low cost, and rapid prototyping. However, different designed insoles tend to have different effects. The study aimed to use 3D printing technology to fabricate three different kinds of designed insoles in order to compare the biomechanical effects on the lower extremities in flat foot participants. Ten participants with functional flat foot were recruited for this study. Data were recorded via a Vicon motion capture system and force plates during walking under four conditions: without insoles (shoe condition), with auto-scan insoles (scan condition), with total contact insoles (total condition), and with 5-mm wedge added total contact insoles (wedge condition). The navicular height, eversion and dorsiflexion angles of the ankle joint, eversion moment of the ankle joint, and adduction moment of the knee joint were analyzed, and comfort scales were recorded after finishing the analysis. Compared to the shoe condition, all three 3D printed insoles could increase the navicular height and ankle dorsiflexion angle and improve comfort. Among the three insoles, the wedge condition was the most efficient in navicular height support and increasing the ankle dorsiflexion angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA