Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7463, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39198443

RESUMO

Most cancer cells reprogram their glucose metabolic pathway from oxidative phosphorylation to aerobic glycolysis for energy production. By reducing enzyme activity of pyruvate kinase M2 (PKM2), cancer cells attain a greater fraction of glycolytic metabolites for macromolecule synthesis needed for rapid proliferation. Here we demonstrate that hydrogen sulfide (H2S) destabilizes the PKM2 tetramer into monomer/dimer through sulfhydration at cysteines, notably at C326, leading to reduced PKM2 enzyme activity and increased PKM2-mediated transcriptional activation. Blocking PKM2 sulfhydration at C326 through amino acid mutation stabilizes the PKM2 tetramer and crystal structure further revealing the tetramer organization of PKM2-C326S. The PKM2-C326S mutant in cancer cells rewires glucose metabolism to mitochondrial respiration, significantly inhibiting tumor growth. In this work, we demonstrate that PKM2 sulfhydration by H2S inactivates PKM2 activity to promote tumorigenesis and inhibiting this process could be a potential therapeutic approach for targeting cancer metabolism.


Assuntos
Glucose , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Humanos , Glucose/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/química , Cisteína/metabolismo , Glicólise , Hormônios Tireóideos/metabolismo , Mutação , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Multimerização Proteica , Camundongos Nus , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Ligação a Hormônio da Tireoide
2.
PLoS One ; 18(4): e0284744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37083947

RESUMO

RAS, the most frequently mutated oncogene that drives tumorigenesis by promoting cell proliferation, survival, and motility, has been perceived as undruggable for the past three decades. However, intense research in the past has mainly focused on KRAS mutations, and targeted therapy for NRAS mutations remains an unmet medical need. NRAS mutation is frequently observed in several cancer types, including melanoma (15-20%), leukemia (10%), and occasionally other cancer types. Here, we report using miRNA-708, which targets the distinct 3' untranslated region (3'UTR) of NRAS, to develop miRNA-based precision medicine to treat NRAS mutation-driven cancers. We first confirmed that NRAS is a direct target of miRNA-708. Overexpression of miRNA-708 successfully reduced NRAS protein levels in melanoma, leukemia, and lung cancer cell lines with NRAS mutations, resulting in suppressed cell proliferation, anchorage-independent growth, and promotion of reactive oxygen species-induced apoptosis. Consistent with the functional data, the activities of NRAS-downstream effectors, the PI3K-AKT-mTOR or RAF-MEK-ERK signaling pathway, were impaired in miR-708 overexpressing cells. On the other hand, cell proliferation was not disturbed by miRNA-708 in cell lines carrying wild-type NRAS. Collectively, our data unveil the therapeutic potential of using miRNA-708 in NRAS mutation-driven cancers through direct depletion of constitutively active NRAS and thus inhibition of its downstream effectors to decelerate cancer progression. Harnessing the beneficial effects of miR-708 may therefore offer a potential avenue for small RNA-mediated precision medicine in cancer treatment.


Assuntos
Leucemia , Melanoma , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Melanoma/metabolismo , MicroRNAs/genética , Mutação , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA