Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338462

RESUMO

Tuberculosis is one of the most common infectious diseases in the world, caused by Mycobacterium tuberculosis. The outbreak of multiple drug-resistant tuberculosis has become a major challenge to prevent this disease worldwide. ClpC1 is a Clp ATPase protein of Mycobacterium tuberculosis, functioning as a chaperon when combined with the Clp complex. ClpC1 has emerged as a new target to discover anti-tuberculosis drugs. This study aimed to explore the ClpC1 inhibitors from actinomycetes, which have been known to provide abundant sources of antibiotics. Two cyclic peptides, including nocardamin (1), halolitoralin A (3), and a lactone pleurone (2), were isolated from the culture of Streptomyces aureus (VTCC43181). The structures of these compounds were determined based on the detailed analysis of their spectral data and comparison with references. This is the first time these compounds have been isolated from S. aureus. Compounds 1-3 were evaluated for their affection of ATPase activity of the recombinant ClpC1 protein. Of these compounds, halolitoralin A (1), a macrocyclic peptide, was effective for the ATPase hydrolysis of the ClpC1 protein.


Assuntos
Mycobacterium tuberculosis , Streptomyces , Staphylococcus aureus/metabolismo , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Adenosina Trifosfatases/metabolismo
2.
Plant Physiol Biochem ; 206: 108224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091930

RESUMO

The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.


Assuntos
Oryza , Oryza/fisiologia , Etilenos/farmacologia , Genes de Plantas , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética
3.
Plants (Basel) ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896063

RESUMO

Rice (Oryza sativa) is a major crop and a main food for a major part of the global population. Rice species have derived from divergent agro-climatic regions, and thus, the local germplasm has a large genetic diversity. This study investigated the relationship between phenotypic and genetic variabilities of yield and yield-associated traits in Aus rice to identify short-duration, high-yielding genotypes. Targeting this issue, a field experiment was carried out to evaluate the performance of 51 Aus rice genotypes, including 50 accessions in F5 generation and one short-duration check variety BINAdhan-19. The genotypes exhibited a large and significant variation in yield and its associated traits, as evidenced by a wide range of their coefficient of variance. The investigated traits, including days to maturity (DM), plant height (PH), panicle length (PL) and 1000-grain weight (TW) exhibited a greater genotypic coefficient of variation than the environmental coefficient of variation. In addition, the high broad-sense heritability of DM, PH, PL and TW traits suggests that the genetic factors significantly influence the observed variations in these traits among the F5 Aus rice accessions. This study also revealed that the grain yield per hill (GY) displayed a significant positive correlation with PL, number of filled grains per panicle (FG) and TW at both genotype and phenotype levels. According to the hierarchical and K-means cluster analyses, the accessions BU-R-ACC-02, BU-R-ACC-08 and R2-36-3-1-1 have shorter DM and relatively higher GY than other Aus rice accessions. These three accessions could be employed in the ongoing and future breeding programs for the improvement of short-duration and high-yielding rice cultivars.

4.
Plant Physiol Biochem ; 204: 108129, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37897894

RESUMO

Plant responses to drought are mediated by hormones like ABA (abscisic acid) and auxin. These hormones regulate plant drought responses by modulating various physiological and biological processes via cell signaling. ABA accumulation and signaling are central to plant drought responses. Auxin also regulates plant adaptive responses to drought, especially via signal transduction mediated by the interaction between ABA and auxin. In this review, we explored the interactive roles of ABA and auxin in the modulation of stomatal movement, root traits and accumulation of reactive oxygen species associated with drought tolerance.


Assuntos
Ácido Abscísico , Ácidos Indolacéticos , Secas , Plantas , Hormônios , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Estômatos de Plantas/fisiologia
5.
Front Cardiovasc Med ; 10: 1197427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745120

RESUMO

Background: It has been a scarcity of evidence regarding differences in left ventricular (LV) and left atrial (LA) size and strain changes across stages of chronic kidney disease (CKD) and which echocardiographic parameters could be utilized to predict the decline of glomerular filtration rate (GFR). Objectives: This study aimed to evaluate the alterations of LV and LA strain across the reduction of renal function and potential echocardiographic parameters which could be correlated with the GFR decline among patients with CKD. Method: A cross-sectional study was conducted on 169 CKD patients at Bach Mai General Hospital, Hanoi, Vietnam from April to November 2022. Demographic, clinical and laboratory characteristics of patients were collected. Transthoracic echocardiography was performed to measure LV and LA size and strains. Jonckheere-Terpstra test was used to measure the tendency of change. Multivariate linear regression models were performed to find associations between different echocardiographic parameters and renal function reduction. Results: The number of patients with CKD stages 1, 2, 3, 4, and 5 was 21 (12.4%), 28 (16.6%), 27 (16.0%), 22 (13.0%) and 71 (42.0%), respectively. CKD severity was positively associated with LV diastolic and systolic diameters, LV mass, E/e' ratio, and maximal tricuspid regurgitation velocity (TR max), and negatively correlated with the LV global longitudinal strain. Higher severity of CKD stage was associated with higher LA diameter, LA strain, and volume in four and two-chamber views, and lower LA reservoir and conduit function. Left ventricular mass (ß = 0.068), ejection fraction (ß = 0.112) and left atrial reservoir (ß = -0.077) were associated with reduced GFR. Conclusion: Left ventricular mass, ejection fraction, and atrial longitudinal strain by STE should be done at the earlier stages of CKD patients for better follow-up of GFR decline.

6.
Plants (Basel) ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050174

RESUMO

The reproductive stage of cotton (Gossypium sp.) is highly sensitive to waterlogging. The identification of potential elite upland cotton (Gossypium hirsutum) cultivar(s) having higher waterlogging tolerance is crucial to expanding cotton cultivation in the low-lying areas. The present study was designed to investigate the effect of waterlogging on the reproductive development of four elite upland cotton cultivars, namely, Rupali-1, CB-12, CB-13, and DM-3, against four waterlogging durations (e.g., 0, 3, 6, and 9-day). Waterlogging stress significantly impacted morpho-physiological, biochemical, and yield attributes of cotton. Two cotton cultivars, e.g., CB-12 and Rupali-1, showed the lowest reduction in plant height (6 and 9%, respectively) and boll weight (8 and 5%, respectively) at the highest waterlogging duration of 9 days. Physiological and biochemical data revealed that higher leaf chlorophyll, proline, and relative water contents, and lower malondialdehyde contents, particularly in CB-12 and Rupali-1, were positively correlated with yield. Notably, CB-12 and Rupali-1 had higher seed cotton weight (90.34 and 83.10 g, respectively), lint weight (40.12 and 39.32 g, respectively), and seed weight (49.47 and 43.78 g, respectively) per plant than CB-13 and DM-3 in response to the highest duration of waterlogging of 9 days. Moreover, extensive multivariate analyses like Spearman correlation and the principle component analysis revealed that CB-12 and Rupali-1 had greater coefficients in yield and physiological attributes at 9-day waterlogging, whereas CB-13 and DM-3 were sensitive cultivars in response to the same levels of waterlogging. Thus, CB-12 and Rupali-1 might be well adapted to the low-lying waterlogging-prone areas for high and sustained yield.

7.
Korean Circ J ; 53(2): 69-91, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36792558

RESUMO

Cardio-oncology is an emerging multi-disciplinary field, which aims to reduce morbidity and mortality of cancer patients by preventing and managing cancer treatment-related cardiovascular toxicities. With the exponential growth in cancer and cardiovascular diseases in Asia, there is an emerging need for cardio-oncology awareness among physicians and country-specific cardio-oncology initiatives. In this state-of-the-art review, we sought to describe the burden of cancer and cardiovascular disease in Asia, a region with rich cultural and socio-economic diversity. From describing the uniqueness and challenges (such as socio-economic disparity, ethnical and racial diversity, and limited training opportunities) in establishing cardio-oncology in Asia, and outlining ways to overcome any barriers, this article aims to help advance the field of cardio-oncology in Asia.

8.
Plant Cell Physiol ; 63(12): 1900-1913, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681253

RESUMO

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Germinação/genética , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
9.
PLoS One ; 17(9): e0275347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36178928

RESUMO

BACKGROUND: Sediment scour at downstream of hydraulic structures is one of the main reasons threatening its stability. Several soil properties and initial input data have been studied to investigate its influence on scour hole geometry by both physical and numerical models. However, parameters of resistance affecting sedimentation and erosion phenomena have not been carried out in the literature. Besides, the auxiliary-like wing walls prevalently used in many real applications have been rarely addressed for their effect on morphological change. RESULTS: In this study, a 3D Computational Fluid Dynamics model is utilized to calibrate the hydraulic characteristics of steady flow going through the culvert by comparison with experimental data, showing good agreement between water depth, velocity, and pressure profiles at the bottom of the boxed culvert. The results show that a grid cell of 0.015 m gave minimum NRMSE and MAE values in test cases. Another approach is numerical testing sediment scour at a meander flume outlet with a variety of roughness/d50 ratio (cs) and diversion wall types. The findings include the following: cs = 2.5 indicates the close agreement between the numerical and analytical results of maximum scour depth after the culvert; the influence of four types of wing wall on the geometrical deformation including erosion at the concave bank and deposition at the convex bank of the meander flume outlet; and two short headwalls represent the best solution that accounts for small morphological changes. CONCLUSIONS: The influence of the roughness parameter of soil material and headwall types on sediment scour at the meander exit channel of hydraulic structure can be estimated by the numerical model.


Assuntos
Sedimentos Geológicos , Movimentos da Água , Animais , Hidrodinâmica , Solo , Água
10.
Plant J ; 111(6): 1732-1752, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883014

RESUMO

Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Histidina/genética , Histidina/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
11.
Plant Cell Physiol ; 63(6): 817-828, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35388418

RESUMO

Heterotrimeric G-proteins modulate multiple signaling pathways in many eukaryotes. In plants, G-proteins have been characterized primarily from a few model angiosperms and a moss. Even within this small group, they seem to affect plant phenotypes differently: G-proteins are essential for survival in monocots, needed for adaptation but are nonessential in eudicots, and are required for life cycle completion and transition from the gametophytic to sporophytic phase in the moss Physcomitrium (Physcomitrella) patens. The classic G-protein heterotrimer consists of three subunits: one Gα, one Gß and one Gγ. The Gα protein is a catalytically active GTPase and, in its active conformation, interacts with downstream effectors to transduce signals. Gα proteins across the plant evolutionary lineage show a high degree of sequence conservation. To explore the extent to which this sequence conservation translates to their function, we complemented the well-characterized Arabidopsis Gα protein mutant, gpa1, with Gα proteins from different plant lineages and with the yeast Gpa1 and evaluated the transgenic plants for different phenotypes controlled by AtGPA1. Our results show that the Gα protein from a eudicot or a monocot, represented by Arabidopsis and Brachypodium, respectively, can fully complement all gpa1 phenotypes. However, the basal plant Gα failed to complement the developmental phenotypes exhibited by gpa1 mutants, although the phenotypes that are exhibited in response to various exogenous signals were partially or fully complemented by all Gα proteins. Our results offer a unique perspective on the evolutionarily conserved functions of G-proteins in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Proteínas Heterotriméricas de Ligação ao GTP , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética
12.
Gene ; 819: 146210, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35104577

RESUMO

'Sugars Will Eventually be Exported Transporters' (SWEETs) are a group of sugar transporters that play crucial roles in various biological processes, particularly plant stress responses. However, no information is available yet for the CaSWEET family in chickpea. Here, we identified all putative CaSWEET members in chickpea, and obtained their major characteristics, including physicochemical patterns, chromosomal distribution, subcellular localization, gene organization, conserved motifs and three-dimensional protein structures. Subsequently, we explored available transcriptome data to compare spatiotemporal transcript abundance of CaSWEET genes in various major organs. Finally, we studied the changes in their transcript levels in leaves and/or roots following dehydration and exogenous abscisic acid treatments using RT-qPCR to obtain valuable information underlying their potential roles in chickpea responses to water-stress conditions. Our results provide the first insights into the characteristics of the CaSWEET family members and a foundation for further functional characterizations of selected candidate genes for genetic engineering of chickpea.


Assuntos
Transporte Biológico/genética , Cicer/genética , Cicer/metabolismo , Perfilação da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ácido Abscísico/metabolismo , Desidratação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
13.
Zool Stud ; 61: e88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37007819

RESUMO

Oxyurichthys is a genus of goby that is widespread in the tropical Indo-West Pacific region. Oxyurichthys species are usually found in estuarine and coastal marine habitats. In Southeast Asia, they are commercial fishes and often collected by trawling to serve the market's demand. The mitogenome serves as a good marker for investigating the systematics and evolution of fishes, but the mitogenome of Oxyurichthys species remains unknown. In this study, mitogenomes of two Oxyurichthys gobies, O. ophthalmonema and O. microlepis, were characterized and compared. The sizes of the mitogenomes were 16,504 bp and 16,506 bp for O. ophthalmonema and O. microlepis, respectively. Mitogenomes of these two species were similar in gene content and structure. Both included 37 genes and a control region. The two Oxyurichthys mitogenomes shared similar gene features and base composition with other recorded gobies. Typical conserved blocks (CSB-1, CSB-2, CSB-3 and CSB-D) were found in the control region of both species. Phylogenetic analyses based on concatenation of 13 protein-coding genes and 2 rRNAs revealed that the two Oxyurichthys species clustered together and were sister to species of the genera Sicydium, Sicyopterus and Stiphodon. The findings of the present study support previous evolutionary studies of gobies using other molecular markers.

14.
Antioxidants (Basel) ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829686

RESUMO

Metalloid contamination, such as arsenic poisoning, poses a significant environmental problem, reducing plant productivity and putting human health at risk. Phytohormones are known to regulate arsenic stress; however, the function of strigolactones (SLs) in arsenic stress tolerance in rice is rarely investigated. Here, we investigated shoot responses of wild-type (WT) and SL-deficient d10 and d17 rice mutants under arsenate stress to elucidate SLs' roles in rice adaptation to arsenic. Under arsenate stress, the d10 and d17 mutants displayed severe growth abnormalities, including phenotypic aberrations, chlorosis and biomass loss, relative to WT. Arsenate stress activated the SL-biosynthetic pathway by enhancing the expression of SL-biosynthetic genes D10 and D17 in WT shoots. No differences in arsenic levels between WT and SL-biosynthetic mutants were found from Inductively Coupled Plasma-Mass Spectrometry analysis, demonstrating that the greater growth defects of mutant plants did not result from accumulated arsenic in shoots. The d10 and d17 plants had higher levels of reactive oxygen species, water loss, electrolyte leakage and membrane damage but lower activities of superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and glutathione S-transferase than did the WT, implying that arsenate caused substantial oxidative stress in the SL mutants. Furthermore, WT plants had higher glutathione (GSH) contents and transcript levels of OsGSH1, OsGSH2, OsPCS1 and OsABCC1 in their shoots, indicating an upregulation of GSH-assisted arsenic sequestration into vacuoles. We conclude that arsenate stress activated SL biosynthesis, which led to enhanced arsenate tolerance through the stimulation of cellular antioxidant defense systems and vacuolar sequestration of arsenic, suggesting a novel role for SLs in rice adaptation to arsenic stress. Our findings have significant implications in the development of arsenic-resistant rice varieties for safe and sustainable rice production in arsenic-polluted soils.

15.
Biol Chem ; 402(10): 1213-1224, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34342947

RESUMO

Osteoporosis, one of the most serious public health concerns caused by an imbalance between bone resorption and bone formation, has a major impact on the population. Therefore, finding the effective osteogenic compounds for the treatment of osteoporosis is a promising research approach. In our study, tamarind (Tamarindus indica L.) seed polysaccharide (TSP) extracted from tamarind seed was subjected to synthesize its sulfate derivatives. The 1H NMR, FT-IR, SEM, monosaccharide compositions and elemental analysis data revealed that tamarind seed polysaccharide sulfate (TSPS) was successfully prepared. As the result, TSPS showed potent effects on inducing osteoblast differentiation via increasing alkaline phosphatase (ALP) activity up to 20% after 10 days and bone mineralization approximately 58% after four weeks at concentration of 20 µg/mL, whereas no statistically increase for both ALP activity and bone mineralization was observed in TSP treatment. Furthermore, TSPS enhanced expression of several marker genes in bone formation. Overall, the obtained data provided novelty on osteogenic compounds originated from TSP of T. indica, as well as scientific fundamentals on drug development and bone tissue engineering for the treatment of osteoporosis and other bone-related diseases.


Assuntos
Osteogênese , Tamarindus , Polissacarídeos , Sulfatos
16.
Plant Sci ; 289: 110249, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623782

RESUMO

The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.


Assuntos
Bradyrhizobium/fisiologia , Glycine max/metabolismo , Fixação de Nitrogênio , Fosfatos/deficiência , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Nódulos Radiculares de Plantas/microbiologia , Glycine max/microbiologia
17.
Front Plant Sci ; 10: 521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105723

RESUMO

The external application of acetic acid has recently been reported to enhance survival of drought in plants such as Arabidopsis, rapeseed, maize, rice, and wheat, but the effects of acetic acid application on increased drought tolerance in woody plants such as a tropical crop "cassava" remain elusive. A molecular understanding of acetic acid-induced drought avoidance in cassava will contribute to the development of technology that can be used to enhance drought tolerance, without resorting to transgenic technology or advancements in cassava cultivation. In the present study, morphological, physiological, and molecular responses to drought were analyzed in cassava after treatment with acetic acid. Results indicated that the acetic acid-treated cassava plants had a higher level of drought avoidance than water-treated, control plants. Specifically, higher leaf relative water content, and chlorophyll and carotenoid levels were observed as soils dried out during the drought treatment. Leaf temperatures in acetic acid-treated cassava plants were higher relative to leaves on plants pretreated with water and an increase of ABA content was observed in leaves of acetic acid-treated plants, suggesting that stomatal conductance and the transpiration rate in leaves of acetic acid-treated plants decreased to maintain relative water contents and to avoid drought. Transcriptome analysis revealed that acetic acid treatment increased the expression of ABA signaling-related genes, such as OPEN STOMATA 1 (OST1) and protein phosphatase 2C; as well as the drought response and tolerance-related genes, such as the outer membrane tryptophan-rich sensory protein (TSPO), and the heat shock proteins. Collectively, the external application of acetic acid enhances drought avoidance in cassava through the upregulation of ABA signaling pathway genes and several stress responses- and tolerance-related genes. These data support the idea that adjustments of the acetic acid application to plants is useful to enhance drought tolerance, to minimize the growth inhibition in the agricultural field.

18.
Biochem Biophys Res Commun ; 511(2): 300-306, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30795866

RESUMO

Cytokinin (CK) signaling has been shown to play important roles in callus formation and various developmental processes by analyzing different CK-responsive mutants, including the ahk2 ahk3 (AHK, Arabidopsis histidine kinase) double mutant. Recently, an F-box protein, called MAX2 (more axillary growth 2) was identified as a key component regulating many growth and developmental processes through the strigolactone and/or karrikin pathways. However, the function of MAX2 signaling in callus formation, seed size and yield, as well as the effects of its crosstalk with CK signaling on plant growth and development remain elusive. Here, we constructed the triple mutant ahk2 ahk3max2 and analyzed the callus formation and various phenotypic traits of all three max2, ahk2 ahk3 and ahk2 ahk3 max2 mutants along with wild-type (WT) during plant growth and development. We showed that MAX2 acted as a negative regulator of seed size, but positive regulator of callus formation and seed yield albeit at lower degree, as the CK receptor kinases. Importantly, our comparative analyses revealed interactive effects of CK and MAX2 pathways on primary root growth, hypocotyl elongation and shoot branching. However, these two pathways might independently regulate root hair growth, leaf development, leaf senescence, plant height, seed size, seed yield and callus formation. Our findings provide not only evidence for the involvement of MAX2 in regulating callus formation, seed size and seed yield, but also a better understanding of the relationship between CK and MAX2 signaling pathways in many key developmental processes across a plant's life.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
19.
PLoS Genet ; 13(11): e1007076, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29131815

RESUMO

Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions. Here, we discovered that mutations in KARRIKIN INSENSITIVE2 (KAI2), encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation. We performed transcriptomic, physiological and biochemical analyses of kai2 plants to understand the basis for KAI2-regulated drought resistance. We found that kai2 mutants have increased rates of water loss and drought-induced cell membrane damage, enlarged stomatal apertures, and higher cuticular permeability. In addition, kai2 plants have reduced anthocyanin biosynthesis during drought, and are hyposensitive to abscisic acid (ABA) in stomatal closure and cotyledon opening assays. We identified genes that are likely associated with the observed physiological and biochemical changes through a genome-wide transcriptome analysis of kai2 under both well-watered and dehydration conditions. These data provide evidence for crosstalk between ABA- and KAI2-dependent signaling pathways in regulating plant responses to drought. A comparison of the strigolactone receptor mutant d14 (DWARF14) to kai2 indicated that strigolactones also contributes to plant drought adaptation, although not by affecting cuticle development. Our findings suggest that chemical or genetic manipulation of KAI2 and D14 signaling may provide novel ways to improve drought resistance.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Ácido Abscísico , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Plântula/genética , Transdução de Sinais
20.
Front Plant Sci ; 8: 1001, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717360

RESUMO

High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS) signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12). A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX), were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2) content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...