Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338397

RESUMO

Zn(II) coordination polymers are being increasingly studied for their stability and properties. Similarly, there is a growing interest in imidazo[1,5-a]pyridine derivatives, which show great potential in luminescence and pharmaceutical applications. In this work, we successfully synthesized and crystallized three new coordination polymers, using Zn(II) as the metallic node, dicarboxylic acids of different length and nature as linkers, and a linear ditopic imidazo[1,5-a]pyridine derivative, to explore the role of this molecule as a propagator of the dimensionality of the structure or as an ancillary ligand. Our work demonstrates the structural capability of imidazo[1,5-a]pyridines in an unexplored domain for this family of ligands. Notably, we observed a pronounced ability of this heterocyclic scaffold to establish π···π interactions in the solid state. The supramolecular π-stacked assemblies were theoretically analyzed using DFT calculations based on model structures.

2.
J Pharm Sci ; 113(5): 1319-1329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38104888

RESUMO

In response to the growing ethical and environmental concerns associated with animal testing, numerous in vitro tools of varying complexity and biorelevance have been developed and adopted in pharmaceutical research and development. In this work, we present one of these tools, i.e., the Meso-fluidic Chip for Permeability Assessment (MCPA), for the first time. The MCPA combines an artificial barrier (PermeaPad®) with an organ-on-chip device (MIVO®) and real-time automated concentration measurements, to yield a sustainable, yet effortless method for permeation testing. The system offers three major physiological aspects, i.e., a biomimetic membrane, an optimal membrane interfacial area-to-donor-volume-ratio (A/V) and a physiological flow on the acceptor/basolateral side, which makes the MPCA an ideal candidate for mechanistic studies and excellent in vivo bioavailability predictions. We validated the method with a handful of assorted drug compounds in unstirred and stirred donor conditions, before exploring its applicability as a tool for dissolution/permeation testing on a BCS class III/I drug (pyrazinamide) crystalline adducts and BCS class II/IV (hydrocortisone) amorphous solid dispersions. The results were highly reproducible and clearly displayed the method's potential for evaluating the performance of enabling formulations, and possibly even predicting in vivo performance. We believe that, upon further development, the MCPA will serve as a useful in vitro tool that could push sustainability into pharmaceutics by refining, reducing and replacing animal testing in early-stage drug development.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Animais , Solubilidade , Composição de Medicamentos/métodos , Permeabilidade , Biofarmácia
3.
Cryst Growth Des ; 23(8): 6034-6045, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37547879

RESUMO

Quercetin, a naturally occurring bioflavonoid substance widely used in the nutraceutical and food industries, exists in various solid forms that can have different physicochemical properties, thus impacting this compound's performance in various applications. In this work, we will clarify the complex solid-form landscape of this molecule. Two elusive isostructural solvates of quercetin were obtained from ethanol and methanol. The obtained crystals were characterized experimentally, but the crystallographic structure could not be solved due to their high instability. Nevertheless, the desolvated structure resulting from a high-temperature treatment (or prolonged storage at ambient conditions) of both these two labile crystals was characterized and solved via powder X-ray diffraction and solid-state nuclear magnetic resonance (SSNMR). This anhydrous crystal structure was compared with another anhydrous quercetin form obtained in our previous work, indicating that, at least, two different anhydrous polymorphs of quercetin exist. Navigating the solid-form landscape of quercetin is essential to ensure accurate control of the functional properties of food, nutraceutical, or pharmaceutical products containing crystal forms of this substance.

4.
Int J Pharm ; 644: 123315, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579827

RESUMO

In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.


Assuntos
Anti-Helmínticos , Praziquantel , Animais , Camundongos , Praziquantel/farmacologia , Praziquantel/química , Niclosamida/farmacologia , Antiparasitários , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Schistosoma mansoni
5.
ACS Appl Mater Interfaces ; 15(23): 28166-28174, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259773

RESUMO

One major concern toward the performance and stability of halide perovskite-based optoelectronic devices is the formation of metallic lead that promotes nonradiative recombination of charge carriers. The origin of metallic lead formation is being disputed whether it occurs during the perovskite synthesis or only after light, electron, or X-ray beam irradiation or thermal annealing. Here, we show that the quantity of metallic lead detected in perovskite crystals depends on the concentration and composition of the precursor solution. Through a controlled crystallization process, we grew black-colored mixed dimethylammonium (DMA)/methylammonium (MA) lead tribromide crystals. The black color is suggested to be due to the presence of small lead clusters. Despite the unexpected black coloring, the crystals show higher crystallinity and less defect density with respect to the standard yellow-colored DMA/MAPbBr3 crystals, as indicated by X-ray rocking curve and dark current measurements, respectively. While the formation of metallic lead could still be induced by external factors, the precursor solution composition and concentration can facilitate the formation of metallic lead during the crystallization process. Our results indicate that additional research is required to fully understand the perovskite precursor solution chemistry.

6.
IUCrJ ; 10(Pt 4): 448-463, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335768

RESUMO

Leucopterin (C6H5N5O3) is the white pigment in the wings of Pieris brassicae butterflies, and other butterflies; it can also be found in wasps and other insects. Its crystal structure and its tautomeric form in the solid state were hitherto unknown. Leucopterin turned out to be a variable hydrate, with 0.5 to about 0.1 molecules of water per leucopterin molecule. Under ambient conditions, the preferred state is the hemihydrate. Initially, all attempts to grow single crystals suitable for X-ray diffraction were to no avail. Attempts to determine the crystal structure by powder diffraction using the direct-space method failed, because the trials did not include the correct, but rare, space group P2/c. Attempts were made to solve the crystal structure by a global fit to the pair distribution function (PDF-Global-Fit), as described by Prill and co-workers [Schlesinger et al. (2021). J. Appl. Cryst. 54, 776-786]. The approach worked well, but the correct structure was not found, because again the correct space group was not included. Finally, tiny single crystals of the hemihydrate could be obtained, which allowed at least the determination of the crystal symmetry and the positions of the C, N and O atoms. The tautomeric state of the hemihydrate was assessed by multinuclear solid-state NMR spectroscopy. 15N CPMAS spectra showed the presence of one NH2 and three NH groups, and one unprotonated N atom, which agreed with the 1H MAS and 13C CPMAS spectra. Independently, the tautomeric state was investigated by lattice-energy minimizations with dispersion-corrected density functional theory (DFT-D) on 17 different possible tautomers, which also included the prediction of the corresponding 1H, 13C and 15N chemical shifts in the solid. All methods showed the presence of the 2-amino-3,5,8-H tautomer. The DFT-D calculations also confirmed the crystal structure. Heating of the hemihydrate results in a slow release of water between 130 and 250 °C, as shown by differential thermal analysis and thermogravimetry (DTA-TG). Temperature-dependent powder X-ray diffraction (PXRD) showed an irreversible continuous shift of the reflections upon heating, which reveals that leucopterin is a variable hydrate. This observation was also confirmed by PXRD of samples obtained under various synthetic and drying conditions. The crystal structure of a sample with about 0.2 molecules of water per leucopterin was solved by a fit with deviating lattice parameters (FIDEL), as described by Habermehl et al. [Acta Cryst. (2022), B78, 195-213]. A local fit, starting from the structure of the hemihydrate, as well as a global fit, starting from random structures, were performed, followed by Rietveld refinements. Despite dehydration, the space group remains P2/c. In both structures (hemihydrate and variable hydrate), the leucopterin molecules are connected by 2-4 hydrogen bonds into chains, which are connected by further hydrogen bonds to neighbouring chains. The molecular packing is very efficient. The density of leucopterin hemihydrate is as high as 1.909 kg dm-3, which is one of the highest densities for organic compounds consisting of C, H, N and O only. The high density might explain the good light-scattering and opacity properties of the wings of Pieris brassicae and other butterflies.


Assuntos
Borboletas , Animais , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Água/química
7.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982258

RESUMO

The antimicrobial activity of the novel coordination polymers obtained by co-crystallizing the amino acids arginine or histidine, as both enantiopure L and racemic DL forms, with the salts Cu(NO3)2 and AgNO3 has been investigated to explore the effect of chirality in the cases of enantiopure and racemic forms. The compounds [Cu·AA·(NO3)2]CPs and [Ag·AA·NO3]CPs (AA = L-Arg, DL-Arg, L-His, DL-His) were prepared by mechanochemical, slurry, and solution methods and characterized by X-ray single-crystal and powder diffraction in the cases of the copper coordination polymers, and by powder diffraction and by solid-state NMR spectroscopy in the cases of the silver compounds. The two pairs of coordination polymers, [Cu·L-Arg·(NO3)2·H2O]CP and [Cu·DL-Arg·(NO3)2·H2O]CP, and [Cu·L-Hys·(NO3)2·H2O]CP and [Cu·DL-His·(NO3)2·H2O]CP, have been shown to be isostructural in spite of the different chirality of the amino acid ligands. A similar structural analogy could be established for the silver complexes on the basis of SSNMR. The activity against the bacterial pathogens Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus was assessed by carrying out disk diffusion assays on lysogeny agar media showing that, while there is no significant effect arising from the use of enantiopure or chiral amino acids, the coordination polymers exert an appreciable antimicrobial activity comparable, when not superior, to that of the metal salts alone.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Nitrato de Prata/farmacologia , Histidina , Cobre/farmacologia , Cobre/química , Polímeros/farmacologia , Polímeros/química , Sais , Cristalografia por Raios X , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Arginina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
8.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838863

RESUMO

When it comes to crystal structure determination, computational approaches such as Crystal Structure Prediction (CSP) have gained more and more attention since they offer some insight on how atoms and molecules are packed in the solid state, starting from only very basic information without diffraction data. Furthermore, it is well known that the coupling of CSP with solid-state NMR (SSNMR) greatly enhances the performance and the accuracy of the predictive method, leading to the so-called CSP-NMR crystallography (CSP-NMRX). In this paper, we present the successful application of CSP-NMRX to determine the crystal structure of three structural isomers of pyridine dicarboxylic acid, namely quinolinic, dipicolinic and dinicotinic acids, which can be in a zwitterionic form, or not, in the solid state. In a first step, mono- and bidimensional SSNMR spectra, i.e., 1H Magic-Angle Spinning (MAS), 13C and 15N Cross Polarisation Magic-Angle Spinning (CPMAS), 1H Double Quantum (DQ) MAS, 1H-13C HETeronuclear CORrelation (HETCOR), were used to determine the correct molecular structure (i.e., zwitterionic or not) and the local molecular arrangement; at the end, the RMSEs between experimental and computed 1H and 13C chemical shifts allowed the selection of the correct predicted structure for each system. Interestingly, while quinolinic and dipicolinic acids are zwitterionic and non-zwitterionic, respectively, in the solid state, dinicotinic acid exhibits in its crystal structure a "zwitterionic-non-zwitterionic continuum state" in which the proton is shared between the carboxylic moiety and the pyridinic nitrogen. Very refined SSNMR experiments were carried out, i.e., 14N-1H Phase-Modulated (PM) pulse and Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR), to provide an accurate N-H distance value confirming the hybrid nature of the molecule. The CSP-NMRX method showed a remarkable match between the selected structures and the experimental ones. The correct molecular input provided by SSNMR reduced the number of CSP calculations to be performed, leading to different predicted structures, while RMSEs provided an independent parameter with respect to the computed energy for the selection of the best candidate.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Espectroscopia de Ressonância Magnética/métodos , Cristalografia por Raios X , Estrutura Molecular
9.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201675

RESUMO

Polyvinyl butyral (PVB) is widely used as an interlayer material in laminated glass applications, mainly in the automotive industry, but also for construction and photovoltaic applications. Post-consumed laminated glass is a waste that is mainly landfilled; nevertheless, it can be revalorized upon efficient separation and removal of adhered glass. PVB interlayers in laminated glass are always plasticized with a significant fraction in the 20-40% w/w range of plasticizer, and they are protected from the environment by two sheets of glass. In this work, the aim is to develop a thorough characterization strategy for PVB films. Neat reference PVB grades intended for interlayer use are compared with properly processed (delaminated) post-consumed PVB grades from the automotive and construction sectors. Methods are developed to open opportunities for recycling and reuse of the latter. The plasticizer content and chemical nature are determined by applying well-known analytical techniques, namely, FT-IR, TGA, NMR. The issue of potential aging during the life cycle of the original laminated material is also addressed through NMR. Based on the findings, a sensor capable of directly sorting PVB post-consumer materials will be developed and calibrated at a later stage.

10.
Pharmaceutics ; 14(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145502

RESUMO

This study aims at developing new multicomponent crystal forms of sulpiride, an antipsychotic drug. The main goal was to improve its solubility since it belongs to class IV of the BCS. Nine new adducts were obtained by combining the active pharmaceutical ingredient with acid coformers: a salt cocrystal and eight molecular salts. In addition, three novel co-drugs, of which two are molecular salts and one is a cocrystal, were also achieved. All samples were characterized in the solid state by complementary techniques (i.e., infrared spectroscopy, powder X-ray diffraction and solid-state NMR). For systems for which it was possible to obtain good-quality single crystals, the structure was solved by single crystal X-ray diffraction (SCXRD). SCXRD combined with solid-state NMR were used to evaluate the ionic or neutral character of the adducts. In vitro dissolution tests of the new crystal forms were performed and all the adducts display remarkable dissolution properties with respect to pure sulpiride.

11.
IUCrJ ; 9(Pt 4): 406-424, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844476

RESUMO

Four different structural models, which all fit the same X-ray powder pattern, were obtained in the structure determination of 4,11-di-fluoro-quinacridone (C20H10N2O2F2) from unindexed X-ray powder data by a global fit. The models differ in their lattice parameters, space groups, Z, Z', molecular packing and hydrogen bond patterns. The molecules form a criss-cross pattern in models A and B, a layer structure built from chains in model C and a criss-cross arrangement of dimers in model D. Nevertheless, all models give a good Rietveld fit to the experimental powder pattern with acceptable R-values. All molecular geometries are reliable, except for model D, which is slightly distorted. All structures are crystallochemically plausible, concerning density, hydrogen bonds, intermolecular distances etc. All models passed the checkCIF test without major problems; only in model A a missed symmetry was detected. All structures could have probably been published, although 3 of the 4 structures were wrong. The investigation, which of the four structures is actually the correct one, was challenging. Six methods were used: (1) Rietveld refinements, (2) fit of the crystal structures to the pair distribution function (PDF) including the refinement of lattice parameters and atomic coordinates, (3) evaluation of the colour, (4) lattice-energy minimizations with force fields, (5) lattice-energy minimizations by two dispersion-corrected density functional theory methods, and (6) multinuclear CPMAS solid-state NMR spectroscopy (1H, 13C, 19F) including the comparison of calculated and experimental chemical shifts. All in all, model B (perhaps with some disorder) can probably be considered to be the correct one. This work shows that a structure determination from limited-quality powder data may result in totally different structural models, which all may be correct or wrong, even if they are chemically sensible and give a good Rietveld refinement. Additionally, the work is an excellent example that the refinement of an organic crystal structure can be successfully performed by a fit to the PDF, and the combination of computed and experimental solid-state NMR chemical shifts can provide further information for the selection of the most reliable structure among several possibilities.

12.
Chemistry ; 28(6): e202103589, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34962330

RESUMO

Among all possible NMR crystallography approaches for crystal-structure determination, crystal structure prediction - NMR crystallography (CSP-NMRX) has recently turned out to be a powerful method. In the latter, the original procedure exploited solid-state NMR (SSNMR) information during the final steps of the prediction. In particular, it used the comparison of computed and experimental chemical shifts for the selection of the correct crystal packing. Still, the prediction procedure, generally carried out with DFT methods, may require important computational resources and be quite time-consuming, especially if there are no available constraints to use at the initial stage. Herein, the successful application of this combined prediction method, which exploits NMR information also in the input step to reduce the search space of the predictive algorithm, is presented. Herein, this method was applied on mebendazole, which is characterized by desmotropism. The use of SSNMR data as constraints for the selection of the right tautomer and the determination of the number of independent molecules in the unit cell led to a considerably faster process, reducing the number of calculations to be performed. In this way, the crystal packing was successfully predicted for the three known phases of mebendazole. To evaluate the quality of the predicted structures, these were compared to the experimental ones. The crystal structure of phase B of mebendazole, in particular, was determined de novo by powder diffraction and is presented for the first time in this paper.


Assuntos
Imageamento por Ressonância Magnética , Mebendazol , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares
13.
Pharmaceutics ; 13(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34683899

RESUMO

Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.

14.
Chem Sci ; 12(9): 3264-3269, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34164095

RESUMO

We demonstrate that liquid additives can exert inhibitive or prohibitive effects on the mechanochemical formation of multi-component molecular crystals, and report that certain additives unexpectedly prompt the dismantling of such solids into physical mixtures of their constituents. Computational methods were employed in an attempt to identify possible reasons for these previously unrecognised effects of liquid additives on mechanochemical transformations.

15.
IUCrJ ; 7(Pt 6): 1124-1130, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209323

RESUMO

Multidrug products enable more effective therapies and simpler administration regimens, provided that a stable formulation is prepared, with the desired composition. In this view, solid solutions have the advantage of combining the stability of a single crystalline phase with the potential of stoichiometry variation of a mixture. Here a drug-prodrug solid solution of cortisone and cortisol (hydrocortisone) is described. Despite the structural differences of the two components, the new phase is obtained both from solution and by supercritical CO2 assisted spray drying. In particular, to enter the solid solution, hydrocortisone must violate Etter's rules for hydrogen bonding. As a result, its dissolution rate is almost doubled.

16.
Pharmaceutics ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872201

RESUMO

We report on the preparation, characterization, and bioavailability properties of three new crystal forms of ethionamide, an antitubercular agent used in the treatment of drug-resistant tuberculosis. The new adducts were obtained by combining the active pharmaceutical ingredient with three dicarboxylic acids, namely glutaric, malonic and tartaric acid, in equimolar ratios. Crystal structures were obtained for all three adducts and were compared with two previously reported multicomponent systems of ethionamide with maleic and fumaric acid. The ethionamide-glutaric acid and the ethionamide-malonic acid adducts were thoroughly characterized by means of solid-state NMR (13C and 15N Cross-Polarization Magic Angle Spinning or CPMAS) to confirm the position of the carboxylic proton, and they were found to be a cocrystal and a salt, respectively; they were compared with two previously reported multicomponent systems of ethionamide with maleic and fumaric acid. Ethionamide-tartaric acid was found to be a rare example of kryptoracemic cocrystal. In vitro bioavailability enhancements up to a factor 3 compared to pure ethionamide were assessed for all obtained adducts.

17.
Chemistry ; 26(44): 10057-10063, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515857

RESUMO

In the continuous search for multimodal systems with combined diagnostic and therapeutic functions, several efforts have been made to develop multifunctional drug delivery systems. In this work, through a covalent approach, a new class of fluorinated poly(lactic-co-glycolic acid) co-polymers (F-PLGA) were designed that contain an increasing number of magnetically equivalent fluorine atoms. In particular, two novel compounds, F3 -PLGA and F9 -PLGA, were synthesized and their chemical structure and thermal stability were analyzed by solution NMR, DSC, and TGA. The obtained F-PLGA compounds were proven to form in aqueous solution colloidal stable nanoparticles (NPs) displaying a strong 19 F NMR signal. The fluorinated NPs also showed an enhanced ability to load hydrophobic drugs containing fluorine atoms compared to analogous pristine PLGA NPs. Preliminary in vitro studies showed high cell viability and the NP ability to intracellularly deliver and release a functioning drug.


Assuntos
Portadores de Fármacos/química , Flúor/análise , Flúor/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética
18.
Pharmaceutics ; 12(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210129

RESUMO

Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A.

19.
Chemistry ; 26(22): 5061-5069, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32039523

RESUMO

The structures and solid-state dynamics of the supramolecular salts of the general formula [(12-crown-4)2 ⋅DABCOH2 ](X)2 (where DABCO=1,4-diazabicyclo[2.2.2]octane, X=BF4 , ClO4 ) have been investigated as a function of temperature (from 100 to 360 K) and pressure (up to 3.4 GPa), through the combination of variable-temperature and variable-pressure XRD techniques and variable-temperature solid-state NMR spectroscopy. The two salts are isomorphous and crystallize in the enantiomeric space groups P32 21 and P31 21 . All building blocks composing the supramolecular complex display dynamic processes at ambient temperature and pressure. It has been demonstrated that the motion of the crown ethers is maintained on lowering the temperature (down to 100 K) or on increasing the pressure (up to 1.5 GPa) thanks to the correlation between neighboring molecules, which mesh and rotate in a concerted manner similar to spiral gears. Above 1.55 GPa, a collapse-type transition to a lower-symmetry ordered structure, not attainable at a temperature of 100 K, takes place, proving, thus, that the pressure acts as the means to couple and decouple the gears. The relationship between temperature and pressure effects on molecular motion in the solid state has also been discussed.

20.
Eur J Pharm Sci ; 140: 105084, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626966

RESUMO

A rotated Doehlert matrix was utilized to explore the experimental design space around the milling parameters of Praziquantel (PZQ) polymorph B formation in terms of frequency and milling time. Three experimental responses were evaluated on the resulting ground samples: two quantitative responses, i.e. median particle size by Laser Light scattering (LLS) and drug recovery by HPLC, and one qualitative dependent variable, i.e. the obtained PZQ crystalline form, characterized through X-Ray Powder Diffraction (XRPD) and confirmed by Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Temperature inside the jars was kept under constant control during the milling process by using temperature sensor equipped jars (thermojars), thus allowing evaluation of the obtained solid states at each experimental point, considering the specific temperature of the process. This explorative analysis led to the finding of a novel PZQ polymorph, named "Form C", produced without degradation, then fully characterized, including by means of Synchrotron XRPD, Polarimetric, FT-IR, SS-NMR, ESEM and saturation solubility. Crystal structure was solved from XRPD data and its geometry was optimized by DFT calculations (CASTEP). Finally, Form C and Form A activity against adult schistosoma mansoni were compared through in vitro testing, and Form C's physical stability checked. The new polymorph, crystallizing in space group I2/c, physically stable for approximately 2 months, showed a m.p. of 106.84 °C and displayed excellent biopharmaceutical properties (water solubility of 382.69±9.26 mg/l), while preserving excellent activity levels against adult schistosoma mansoni.


Assuntos
Praziquantel/química , Praziquantel/farmacologia , Difração de Raios X/métodos , Animais , Química Farmacêutica/métodos , Simulação por Computador , Cristalização/métodos , Teoria da Densidade Funcional , Feminino , Camundongos , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Pós/química , Schistosoma mansoni/efeitos dos fármacos , Software , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...