Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7912-7925, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38620046

RESUMO

We designed [VO(bdhb)] (1') as a new electronic qubit containing an oxovanadium(IV) ion (S = 1/2) embraced by a single bis(ß-diketonato) ligand [H2bdhb = 1,3-bis(3,5-dioxo-1-hexyl)benzene]. The synthesis afforded three different crystal phases, all of which unexpectedly contain dimers with formula [(VO)2(bdhb)2] (1). A trigonal form (1h) with a honeycomb structure and 46% of solvent-accessible voids quantitatively transforms over time into a monoclinic solvatomorph 1m and minor amounts of a triclinic solventless phase (1a). In a static magnetic field, 1h and 1m have detectably slow magnetic relaxation at low temperatures through quantum tunneling and Raman mechanisms. Angle-resolved electron paramagnetic resonance (EPR) spectra on single crystals revealed signatures of low-dimensional magnetic behavior, which is solvatomorph-dependent, being the closest interdimer V···V separations (6.7-7.5 Å) much shorter than intramolecular V···V distances (11.9-12.1 Å). According to 1H diffusion ordered spectroscopy (DOSY) and EPR experiments, the complex adopts the desired monomeric structure in organic solution and its geometry was inferred from density functional theory (DFT) calculations. Spin relaxation measurements in a frozen toluene-d8/CD2Cl2 matrix yielded Tm values reaching 13 µs at 10 K, and coherent spin manipulations were demonstrated by Rabi nutation experiments at 70 K. The neutral quasi-macrocyclic structure, featuring nuclear spin-free donors and additional possibilities for chemical functionalization, makes 1' a new convenient spin-coherent building block in quantum technologies.

2.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257305

RESUMO

Chromium complexes containing a bis(diphenylphosphino) ligand have attracted significant interest over many years due to their potential as active catalysts for ethylene oligomerisation when combined with suitable co-catalysts such as triethylaluminium (TEA) or methylaluminoxane (MAO). While there has been considerable attention devoted to the possible reaction intermediates and the nature of the Cr oxidation states involved, the potential UV photoactivity of the Cr(I) complexes has so far been overlooked. Therefore, to explore the photoinduced transformations of bis(diphenylphosphino) stabilized Cr(I) complexes, we used continuous-wave (CW) EPR to study the effects of UV radiation on a cationic [Cr(CO)4(dppp)]+[Al(OC(CF3)3)4]- complex (1), where dppp represents the 1,3 bis-(diphenylphosphino)propane ligand, Ph2P(C3H6)PPh2. Our preliminary investigations into the photochemistry of this complex revealed that [Cr(CO)4(dppp)]+ (1) can be readily photo-converted into an intermediate mer-[Cr(CO)3(κ1-dppp)(κ2-dppp)]+ complex (2) and eventually into a trans-[Cr(CO)2(dppp)2]+ complex (3) in solution at room temperature under UV-A light. Here, we show that the intermediate species (2) involved in this transformation can be identified by EPR at much lower temperature (140 K) and at a specific wavelength (highlighting the wavelength dependency of the reaction). In addition, small amounts of a 'piano-stool'-type complex, namely [Cr(CO)2(dppp-η6-arene)]+ (4), can also be formed during the photoconversion of [Cr(CO)4(dppp)]+ using UV-A light. There was no evidence for the formation of the [Cr(L-bis-η6-arene)]+ complex (5) in these UV irradiation experiments. For the first time, we also evidence the formation of a 1-hexene coordinated [Cr(CO)3(dppp)(1-hexene)]+ complex (6) following UV irradiation of [Cr(CO)4(dppp)]+ in the presence of 1-hexene; this result demonstrates the unprecedented opportunity for exploiting light activation during Cr-driven olefin oligomerisation catalysis, instead of expensive, difficult-to-handle, and hazardous chemical activators.

3.
Molecules ; 29(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276601

RESUMO

The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.


Assuntos
Compostos Férricos , Heme , Heme/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos Férricos/química , Prótons , Ferro/química , Imidazóis/química , Sistema Enzimático do Citocromo P-450
4.
Angew Chem Int Ed Engl ; 62(48): e202312936, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37812016

RESUMO

In the development of two-qubit quantum gates, precise control over the intramolecular spin-spin interaction between molecular spin units plays a pivotal role. A weak but measurable exchange coupling is especially important for achieving selective spin addressability that allows controlled manipulation of the computational basis states |00⟩ |01⟩ |10⟩ |11⟩ by microwave pulses. Here, we report the synthesis and Electron Paramagnetic Resonance (EPR) study of a heterometallic meso-meso (m-m) singly-linked VIV O-CuII porphyrin dimer. X-band continuous wave EPR measurements in frozen solutions suggest a ferromagnetic exchange coupling of ca. 8 ⋅ 10-3  cm-1 . This estimation is supported by Density Functional Theory calculations, which also allow disentangling the ferro- and antiferromagnetic contributions to the exchange. Pulsed EPR experiments show that the dimer maintains relaxation times similar to the monometallic CuII porphyrins. The addressability of the two individual spins is made possible by the different g-tensors of VIV and CuII -ions, in contrast to homometallic dimers where tilting of the porphyrin planes plays a key role. Therefore, single-spin addressability in the heterometallic dimer can be maintained even with small tilting angles, as expected when deposited on surface, unlocking the full potential of molecular quantum gates for practical applications.

5.
Angew Chem Int Ed Engl ; 62(48): e202313540, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37801043

RESUMO

Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.

6.
Chemistry ; 29(69): e202301005, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677125

RESUMO

Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.

7.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37409444

RESUMO

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

8.
J Phys Chem C Nanomater Interfaces ; 127(23): 11103-11110, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37342203

RESUMO

Engineering two cooperative sites into a catalyst implies the onset of synergistic effects related to the existence of short-range electronic interactions between two metal components. However, these interactions and the relative structure-property correlations are often difficult to obtain. Here we show that hyperfine spectroscopy has the potential to reveal the presence of V4+-O-Mo6+ linkages assessing the degree of spin density transfer from paramagnetic V4+ species to proximal oxo-bridged Mo6+ metal ions. The dimer species were prepared by adsorption of Mo(CO)6 in the pores of SAPO-5, followed by thermal decomposition and oxidation and subsequent grafting of anhydrous VCl4(g) followed by hydrolysis and dehydration. The metal species react with SAPO protons during the exchange process and generate new Lewis acid sites, which act as redox centers. X- and Q-band EPR and HYSCORE experiments have been employed to monitor the local environment of V4+ species obtaining direct evidence for spin delocalization over 27Al, 31P, 95Mo, and 97Mo nuclei, demonstrating the presence of bimetallic V-O-Mo well-defined structures.

9.
Nat Commun ; 14(1): 2368, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185349

RESUMO

Designing metal sites into de novo proteins has significantly improved, recently. However, identifying the minimal coordination spheres, able to encompass the necessary information for metal binding and activity, still represents a great challenge, today. Here, we test our understanding with a benchmark, nevertheless difficult, case. We assemble into a miniature 28-residue protein, the quintessential elements required to fold properly around a FeCys4 redox center, and to function efficiently in electron-transfer. This study addresses a challenge in de novo protein design, as it reports the crystal structure of a designed tetra-thiolate metal-binding protein in sub-Å agreement with the intended design. This allows us to well correlate structure to spectroscopic and electrochemical properties. Given its high reduction potential compared to natural and designed FeCys4-containing proteins, we exploit it as terminal electron acceptor of a fully artificial chain triggered by visible light.

10.
J Phys Chem C Nanomater Interfaces ; 127(18): 8778-8787, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37197384

RESUMO

Particle attachment and neck formation inside TiO2 nanoparticle networks determine materials performance in sensing, photo-electrochemistry, and catalysis. Nanoparticle necks can feature point defects with potential impact on the separation and recombination of photogenerated charges. Here, we investigated with electron paramagnetic resonance a point defect that traps electrons and predominantly forms in aggregated TiO2 nanoparticle systems. The associated paramagnetic center resonates in the g factor range between g = 2.0018 and 2.0028. Structure characterization and electron paramagnetic resonance data suggest that during materials processing, the paramagnetic electron center accumulates in the region of nanoparticle necks, where O2 adsorption and condensation can occur at cryogenic temperatures. Complementary density functional theory calculations reveal that residual carbon atoms, which potentially originate from synthesis, can substitute oxygen ions in the anionic sublattice, where they trap one or two electrons that mainly localize at the carbon. Their emergence upon particle neck formation is explained by the synthesis- and/or processing-induced particle attachment and aggregation facilitating carbon atom incorporation into the lattice. This study represents a substantial advance in linking dopants, point defects, and their spectroscopic fingerprints to microstructural features of oxide nanomaterials.

11.
JACS Au ; 3(4): 1250-1262, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124308

RESUMO

Sulfur-rich molecular complexes of dithiolene-like ligands are appealing candidates as molecular spin qubits because spin coherence properties are enhanced in hydrogen-free environments. Herein, we employ the hydrogen-free mononegative 1,3,2-dithiazole-4-thione-5-thiolate (dttt-) ligand as an alternative to common dinegative dithiolate ligands. We report the first synthesis and structural characterization of its Cu2+, Ni2+, and Pt2+ neutral complexes. The XPS analysis of thermal deposition of [Cu(dttt)2] in UHV conditions indicates that films of intact molecules can be deposited on surfaces by sublimation. Thanks to a combined approach employing DC magnetometry and DFT calculations, we highlighted AF exchange interactions of 108 cm-1 and 36 cm-1 attributed to the two different polymorph phases. These couplings are exclusively mediated by S···S VdW interactions, which are facilitated by the absence of counterions and made particularly efficient by the diffuse electron density on S atoms. Furthermore, the spin dynamics of solid-state magnetically diluted samples was investigated. The longest observed T m is 2.3 µs at 30 K, which significantly diverges from the predicted T m > 100 µs. These results point to the diluting matrix severely affecting the coherence lifetime of Cu2+ species via different factors, such as the contributions of neighboring 14N nuclei and the formation of radical impurities in a non-completely controllable way. However, the ease of processing [Cu(dttt)2] via thermal sublimation can allow dispersion in matrices better suited for coherent spin manipulation of isolated molecules and the realization of AF-coupled VdW structures on surfaces.

12.
Angew Chem Int Ed Engl ; 62(4): e202213700, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36399425

RESUMO

The hydration structure of nitroxide radicals in aqueous solutions is elucidated by advanced 17 O hyperfine (hf) spectroscopy with support of quantum chemical calculations and MD simulations. A piperidine and a pyrrolidine-based nitroxide radical are compared and show clear differences in the preferred directionality of H-bond formation. We demonstrate that these scenarios are best represented in 17 O hf spectra, where in-plane coordination over σ ${\sigma }$ -type H-bonding leads to little spin density transfer on the water oxygen and small hf couplings, whereas π ${{\rm \pi }}$ -type perpendicular coordination generates much larger hf couplings. Quantitative analysis of the spectra based on MD simulations and DFT predicted hf parameters is consistent with a distribution of close solvating water molecules, in which directionality is influenced by subtle steric effects of the ring and the methyl group substituents.


Assuntos
Óxidos de Nitrogênio , Água , Espectroscopia de Ressonância de Spin Eletrônica , Óxidos de Nitrogênio/química , Soluções , Radicais Livres
13.
Angew Chem Int Ed Engl ; 62(1): e202211552, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334012

RESUMO

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.


Assuntos
Cobre , Metaloproteínas , Cobre/química , Catecóis/química , Metaloproteínas/química , Oxirredução
14.
Inorg Chem Front ; 11(1): 186-195, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38221947

RESUMO

We herein investigate the heterobimetallic lantern complexes [PtVO(SOCR)4] as charge neutral electronic qubits based on vanadyl complexes (S = 1/2) with nuclear spin-free donor atoms. The derivatives with R = Me (1) and Ph (2) give highly resolved X-band EPR spectra in frozen CH2Cl2/toluene solution, which evidence the usual hyperfine coupling with the 51V nucleus (I = 7/2) and an additional superhyperfine interaction with the I = 1/2 nucleus of the 195Pt isotope (natural abundance ca. 34%). DFT calculations ascribe the spin density delocalization on the Pt2+ ion to a combination of π and δ pathways, with the former representing the predominant channel. Spin relaxation measurements in frozen CD2Cl2/toluene-d8 solution between 90 and 10 K yield Tm values (1-6 µs in 1 and 2-11 µs in 2) which compare favorably with those of known vanadyl-based qubits in similar matrices. Coherent spin manipulations indeed prove possible at 70 K, as shown by the observation of Rabi oscillations in nutation experiments. The results indicate that the heavy Group 10 metal ion is not detrimental to the coherence properties of the vanadyl moiety and that Pt-VO lanterns can be used as robust spin-coherent building blocks in materials science and quantum technologies.

15.
Acc Chem Res ; 55(24): 3706-3715, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442497

RESUMO

ConspectusEven in the gas phase single atoms possess catalytic properties, which can be crucially enhanced and modulated by the chemical interaction with a solid support. This effect, known as electronic metal-support interaction, encompasses charge transfer, orbital overlap, coordination structure, etc., in other words, all the crucial features of the chemical bond. These very features are the object of this Account, with specific reference to open-shell (paramagnetic) single metal atoms or ions on oxide supports. Such atomically dispersed species are part of the emerging class of heterogeneous catalysts known as single-atom catalysts (SACs). In these materials, atomic dispersion ensures maximum atom utilization and uniform active sites, whereby the nature of the chemical interaction between the metal and the oxide surface modulates the catalytic activity of the metal active site by tuning the energy of the frontier orbitals. A comprehensive set of examples includes fourth period metal atoms and ions in zeolites on insulating (e.g., MgO) or reducible (e.g., TiO2) oxides and are among the most relevant catalysts for a wealth of key processes of industrial and environmental relevance, from the abatement of NOx to the selective oxidation of hydrocarbons and the conversion of methane to methanol.There exist several spectroscopic techniques able to inform on the geometric and electronic structure of isolated single metal ion sites, but either they yield information averaged over the bulk or they lack description of the intimate features of chemical bonding, which include covalency, ionicity, electron and spin delocalization. All of these can be recovered at once by measuring the magnetic interactions between open-shell metals and the surrounding nuclei with Electron Paramagnetic Resonance (EPR) spectroscopy. In the case of oxides, this entails the synthesis of 17O isotopically enriched materials. We have established 17O EPR as a unique source of information about the local binding environment around oxygen of magnetic atoms or ions on different oxidic supports to rationalize structure-property relationships. Here, we will describe strategies for 17O surface enrichments and approaches to monitor the state of charge and spin delocalization of atoms or ions from K to Zn dispersed on oxide surfaces characterized by different chemical properties (i.e., basicity or reducibility). Emphasis is placed on chemical insight at the atomic-scale level achieved by 17O EPR, which is a crucial step in understanding the structure-property relationships of single metal atom catalysts and in enabling efficient design of future materials for a range of end uses.

16.
Chem Sci ; 13(41): 12208-12218, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349110

RESUMO

It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.

17.
Angew Chem Int Ed Engl ; 61(43): e202210640, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36074040

RESUMO

Carbon nitride (CN) is a heterogeneous photocatalyst that combines good structural properties and a broad scope. The photocatalytic efficiency of CN is associated with the presence of defective and radical species. An accurate description of defective states-both at a local and extended level-is key to develop a thorough mechanistic understanding of the photophysics of CN. In turn, this will maximise the generation and usage of photogenerated charge carriers and minimise wasteful charge recombination. Here the influence of morphology and light-excitation on the number and chemical nature of radical defects is assessed. By exploiting the magnetic dipole-dipole coupling, the spatial distribution of native radicals in CN is derived with high precision. From the analysis an average distance in the range 1.99-2.34 nm is determined, which corresponds to pairs of radicals located approximately four tri-s-triazine units apart.

18.
Chem Sci ; 13(34): 9927-9939, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128229

RESUMO

Graphitic carbon nitride (gCN) is an important heterogeneous metal-free catalytic material. Thermally induced post-synthetic modifications, such as amorphization and/or reduction, were recently used to enhance the photocatalytic response of these materials for certain classes of organic transformations, with structural defects possibly playing an important role. The knowledge of how these surface modifications modulate the photocatalytic response of gCN is therefore not only interesting from a fundamental point of view, but also necessary for the development and/or tuning of metal-free gCN systems with superior photo-catalytic properties. Herein, employing density functional theory calculations and combining both the periodic and molecular approaches, in conjunction with experimental EPR measurements, we demonstrate that different structural defects on the gCN surface generate distinctive radical defect states localized within the electronic bandgap, with only those correlated with amorphous and reduced gCN structures being photo-active. To this end, we (i) model defective gCN surfaces containing radical defect states; (ii) assess the interactions of these defects with the radical precursors involved in the photo-driven alkylation of electron-rich aromatic compounds (namely perfluoroalkyl iodides); and (iii) describe the photo-chemical processes triggering the initial step of that reaction at the gCN surface. We provide a coherent structure/photo-catalytic property relationship on defective gCN surfaces, elaborating how only specific defect types act as binding sites for the perfluoroalkyl iodide reagent and can favor a photo-induced charge transfer from the gCN surface to the molecule, thus triggering the perfluoroalkylation reaction.

19.
Phys Chem Chem Phys ; 24(31): 18816-18823, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904064

RESUMO

The electronic properties of a charge-transfer (donor-acceptor) semiconducting organic co-crystal, Perylene:F4-TCNQ (PE:F4) (the donor, D, is PE and the acceptor, A, is 2,3,5,6-tetrafluoro-7,7,8,8 tetracyanoquinodimethane (F4)) in its 3 : 2 stoichiometry, are experimentally and theoretically studied. This is performed by means of electron paramagnetic resonance (EPR) and solid state electrochemical techniques, such as cyclic voltammetry (CV) measurements on single crystals. In particular, solid state electrochemistry proves to be an effective tool to probe, on a macroscopic scale, the electronic characteristics of the co-crystal. However, EPR highlights the presence of spin ½ radicals localized on F4 molecules, possibly linked to defects. The experimental findings are discussed on the basis of density functional theory (DFT) based calculations, carried out using both the projector augmented wave (PAW), with "periodic boundary conditions" (pbc), method and the localized orbitals, molecular cluster, approach. In particular, a satisfying agreement is found between the experimental, 0.336 eV (electrochemical), and theoretical, 0.303 eV (PAW), band gaps. Differences with the reported optical bandgap are discussed considering excitonic effects.

20.
J Am Chem Soc ; 144(29): 13079-13083, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819401

RESUMO

Using EPR and HYSCORE spectroscopies in conjunction with ab initio calculations, we assess the structure of framework-bound monomeric hydroxo-CuII in copper-loaded chabazite (CHA). The species is an interfacial distorted square-planar [CuIIOH(O-8MRs)3] complex located at eight-membered-ring windows, displaying three coordinating bonds with zeolite lattice oxygens and the hydroxo ligand hydrogen-bonded to the cage. The complex has a distinctive EPR signature with g = [2.072 2.072 2.290], CuA= [30 30 410] MHz, and HA = [-13.0 -4.5 +11.5] MHz, distinctively different from other CuII species in CHA.


Assuntos
Zeolitas , Cobre/química , Cristalografia por Raios X , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...