Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Ther Oncol ; 32(1): 200765, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596294

RESUMO

Gallbladder cancer incidence has been increasing globally, and it remains challenging to expect long prognosis with the current systemic chemotherapy. We identified a novel nucleic acid-mediated therapeutic target against gallbladder cancer by using innovative organoid-based gallbladder cancer models generated from KrasLSL-G12D/+; Trp53f/f mice. Using comprehensive microRNA expression analyses and a bioinformatics approach, we identified significant microRNA-34a-5p downregulation in both murine gallbladder cancer organoids and resected human gallbladder cancer specimens. In three different human gallbladder cancer cell lines, forced microRNA-34a-5p expression inhibited cell proliferation and induced cell-cycle arrest at the G1 phase by suppressing direct target (CDK6) expression. Furthermore, comprehensive RNA sequencing revealed the significant enrichment of gene sets related to the cell-cycle regulators after microRNA-34a-5p expression in gallbladder cancer cells. In a murine xenograft model, locally injected microRNA-34a-5p mimics significantly inhibited gallbladder cancer progression and downregulated CDK6 expression. These results provide a rationale for promising therapeutics against gallbladder cancer by microRNA-34a-5p injection, as well as a strategy to explore therapeutic targets against cancers using organoid-based models, especially for those lacking useful genetically engineered murine models, such as gallbladder cancer.

2.
Cancers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539460

RESUMO

Synovial sarcoma (SS), a rare subtype of soft-tissue sarcoma distinguished by expression of the fusion gene SS18-SSX, predominantly affects the extremities of young patients. Existing anticancer drugs have limited efficacy against this malignancy, necessitating the development of innovative therapeutic approaches. Given the established role of SS18-SSX in epigenetic regulation, we focused on bromodomain and extra-terminal domain protein (BET) inhibitors and epigenetic agents. Our investigation of the BET inhibitor ABBV-075 revealed its pronounced antitumor effects, inducing G1-phase cell-cycle arrest and apoptosis, in four SS cell lines. Notably, BET inhibitors exhibited regulatory control over crucial cell-cycle regulators, such as MYC, p21, CDK4, and CDK6. Additionally, RNA sequencing findings across the four cell lines revealed the significance of fluctuating BCL2 family protein expression during apoptotic induction. Notably, variations in the expression ratio of the anti-apoptotic factor BCLxL and the pro-apoptotic factor BIM may underlie susceptibility to ABBV-075. Additionally, knockdown of SS18-SSX, which upregulates BCL2, reduced the sensitivity to ABBV-075. These findings suggest the potential utility of BET inhibitors targeting the SS18-SSX-regulated intrinsic apoptotic pathway as a promising therapeutic strategy for SS.

3.
NPJ Regen Med ; 8(1): 59, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857652

RESUMO

Both mesenchymal stromal cells (MSC) and induced pluripotent stem cells (iPSC) offer the potential for repair of damaged connective tissues. The use of hybrid implants containing both human MSC and iPSC was investigated to assess their combined potential to yield enhanced repair of osteochondral defects. Human iPSC-CP wrapped with tissue engineered constructs (TEC) containing human MSC attained secure defect filling with good integration to adjacent tissue in a rat osteochondral injury model. The presence of living MSC in the hybrid implants was required for effective biphasic osteochondral repair. Thus, the TEC component of such hybrid implants serves several critical functions including, adhesion to the defect site via the matrix and facilitation of the repair via live MSC, as well as enhanced angiogenesis and neovascularization. Based on these encouraging studies, such hybrid implants may offer an effective future intervention for repair of complex osteochondral defects.

4.
Blood Adv ; 7(24): 7459-7470, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37552496

RESUMO

The distribution and clinical impact of cell-of-origin (COO) subtypes of diffuse large B-cell lymphoma (DLBCL) outside Western countries remain unknown. Recent literature also suggests that there is an additional COO subtype associated with the germinal center dark zone (DZ) that warrants wider validation to generalize clinical relevance. Here, we assembled a cohort of Japanese patients with untreated DLBCL and determined the refined COO subtypes, which include the DZ signature (DZsig), using the NanoString DLBCL90 assay. To compare the distribution and clinical characteristics of the molecular subtypes, we used a data set from the cohort of British Columbia Cancer (BCC) (n = 804). Through the 1050 patient samples on which DLBCL90 assay was successfully performed in our cohort, 35%, 45%, and 6% of patients were identified to have germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and DZsig-positive (DZsigpos) DLBCL, respectively, with the highest prevalence of ABC-DLBCL, differing significantly from the BCC result (P < .001). GCB-DLBCL, ABC-DLBCL, and DZsigpos-DLBCL were associated with 2-year overall survival rates of 88%, 75%, and 66%, respectively (P < .0001), with patients with DZsigpos-DLBCL having the poorest prognosis. In contrast, GCB-DLBCL without DZsig showed excellent outcomes after rituximab-containing immunochemotherapy. DZsigpos-DLBCL was associated with the significant enrichment of tumors with CD10 expression, concurrent MYC/BCL2 expression, and depletion of microenvironmental components (all, P < .05). These results provide evidence of the distinct distribution of clinically relevant molecular subtypes in Japanese DLBCL and that refined COO, as measured by the DLBCL90 assay, is a robust prognostic biomarker that is consistent across geographical areas.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Prognóstico , Japão/epidemiologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfócitos B/metabolismo , Rituximab/uso terapêutico
5.
Cancer Res Commun ; 3(7): 1152-1165, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37405123

RESUMO

Clear cell sarcoma (CCS), a rare but extremely aggressive malignancy with no effective therapy, is characterized by the expression of the oncogenic driver fusion gene EWSR1::ATF1. In this study, we performed a high-throughput drug screening, finding that the histone deacetylase inhibitor vorinostat exerted an antiproliferation effect with the reduced expression of EWSR1::ATF1. We expected the reduced expression of EWSR1::ATF1 to be due to the alteration of chromatin accessibility; however, assay for transposase-accessible chromatin using sequencing and a cleavage under targets and release using nuclease assay revealed that chromatin structure was only slightly altered, despite histone deacetylation at the EWSR1::ATF1 promoter region. Alternatively, we found that vorinostat treatment reduced the level of BRD4, a member of the bromodomain and extraterminal motif protein family, at the EWSR1::ATF1 promoter region. Furthermore, the BRD4 inhibitor JQ1 downregulated EWSR1::ATF1 according to Western blotting and qPCR analyses. In addition, motif analysis revealed that vorinostat treatment suppressed the transcriptional factor SOX10, which directly regulates EWSR1::ATF1 expression and is involved in CCS proliferation. Importantly, we demonstrate that a combination therapy of vorinostat and JQ1 synergistically enhances antiproliferation effect and EWSR1::ATF1 suppression. These results highlight a novel fusion gene suppression mechanism achieved using epigenetic modification agents and provide a potential therapeutic target for fusion gene-related tumors. Significance: This study reveals the epigenetic and transcriptional suppression mechanism of the fusion oncogene EWSR1::ATF1 in clear cell sarcoma by histone deacetylase inhibitor treatment as well as identifying SOX10 as a transcription factor that regulates EWSR1::ATF1 expression.


Assuntos
Sarcoma de Células Claras , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Sarcoma de Células Claras/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Vorinostat/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteína EWS de Ligação a RNA/genética
6.
Transplantation ; 107(8): e190-e200, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37046371

RESUMO

BACKGROUND: No effective therapies have yet been established for liver regeneration in liver failure. Autologous skeletal myoblast cell sheet transplantation has been proven to improve cardiac function in patients with heart failure, and one of the mechanisms has been reported to be a paracrine effect by various growth factors associated with liver regeneration. Therefore, the present study focused on the effect of myoblast cells on liver regeneration in vitro and in vivo. METHODS: We assessed the effect of myoblast cells on the cells comprising the liver in vitro in association with liver regeneration. In addition, we examined in vivo effect of skeletal myoblast cell sheet transplantation in C57/BL/6 mouse models of liver failure, such as liver fibrosis induced by thioacetamide and hepatectomy. RESULTS: In vitro, the myoblast cells exhibited a capacity to promote the proliferation of hepatic epithelial cells and the angiogenesis of liver sinusoidal endothelial cells, and suppress the activation of hepatic stellate cells. In vivo, sheet transplantation significantly suppressed liver fibrosis in the induced liver fibrosis model and accelerated liver regeneration in the hepatectomy model. CONCLUSIONS: Autologous skeletal myoblast cell sheet transplantation significantly improved the liver failure in the in vitro and in vivo models. Sheet transplantation is expected to have the potential to be a clinically therapeutic option for liver regeneration in liver failure.


Assuntos
Falência Hepática , Mioblastos Esqueléticos , Animais , Camundongos , Regeneração Hepática , Células Endoteliais , Transplante Autólogo , Cirrose Hepática/cirurgia
7.
Br J Cancer ; 128(10): 1828-1837, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869093

RESUMO

BACKGROUND: Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm. METHODS: Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the tumour-infiltrating Trm cells. The Kaplan-Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC. RESULTS: The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ) signalling-related gene expression in ZNF683+ Trm cells. CONCLUSIONS: The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683 expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.


Assuntos
Neoplasias Colorretais , Memória Imunológica , Fatores de Transcrição , Humanos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linfócitos do Interstício Tumoral , Células T de Memória , Prognóstico , Fatores de Transcrição/metabolismo
8.
Cell Rep ; 42(4): 112276, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965484

RESUMO

Although the skeleton is essential for locomotion, endocrine functions, and hematopoiesis, the molecular mechanisms of human skeletal development remain to be elucidated. Here, we introduce an integrative method to model human skeletal development by combining in vitro sclerotome induction from human pluripotent stem cells and in vivo endochondral bone formation by implanting the sclerotome beneath the renal capsules of immunodeficient mice. Histological and scRNA-seq analyses reveal that the induced bones recapitulate endochondral ossification and are composed of human skeletal cells and mouse circulatory cells. The skeletal cell types and their trajectories are similar to those of human embryos. Single-cell multiome analysis reveals dynamic changes in chromatin accessibility associated with multiple transcription factors constituting cell-type-specific gene-regulatory networks (GRNs). We further identify ZEB2, which may regulate the GRNs in human osteogenesis. Collectively, these results identify components of GRNs in human skeletal development and provide a valuable model for its investigation.


Assuntos
Multiômica , Células-Tronco Pluripotentes , Humanos , Camundongos , Animais , Diferenciação Celular , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/metabolismo
9.
Nat Commun ; 13(1): 6187, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261443

RESUMO

The Runt-related transcription factor (Runx) family plays various roles in the homeostasis of cartilage. Here, we examined the role of Runx2 and Runx3 for osteoarthritis development in vivo and in vitro. Runx3-knockout mice exhibited accelerated osteoarthritis following surgical induction, accompanied by decreased expression of lubricin and aggrecan. Meanwhile, Runx2 conditional knockout mice showed biphasic phenotypes: heterozygous knockout inhibited osteoarthritis and decreased matrix metallopeptidase 13 (Mmp13) expression, while homozygous knockout of Runx2 accelerated osteoarthritis and reduced type II collagen (Col2a1) expression. Comprehensive transcriptional analyses revealed lubricin and aggrecan as transcriptional target genes of Runx3, and indicated that Runx2 sustained Col2a1 expression through an intron 6 enhancer when Sox9 was decreased. Intra-articular administration of Runx3 adenovirus ameliorated development of surgically induced osteoarthritis. Runx3 protects adult articular cartilage through extracellular matrix protein production under normal conditions, while Runx2 exerts both catabolic and anabolic effects under the inflammatory condition.


Assuntos
Anabolizantes , Cartilagem Articular , Osteoartrite , Animais , Camundongos , Agrecanas/genética , Agrecanas/metabolismo , Anabolizantes/farmacologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Knockout , Osteoartrite/genética , Osteoartrite/metabolismo
10.
Sci Adv ; 8(33): eabn2138, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984875

RESUMO

Ectopic endochondral ossification in the tendon/ligament is caused by repetitive mechanical overload or inflammation. Tendon stem/progenitor cells (TSPCs) contribute to tissue repair, and some express lubricin [proteoglycan 4 (PRG4)]. However, the mechanisms of ectopic ossification and association of TSPCs are not yet known. Here, we investigated the characteristics of Prg4-positive (+) cells and identified that R-spondin 2 (RSPO2), a WNT activator, is specifically expressed in a distinct Prg4+ TSPC cluster. The Rspo2+ cluster was characterized as mostly undifferentiated, and RSPO2 overexpression suppressed ectopic ossification in a mouse Achilles tendon puncture model via chondrogenic differentiation suppression. RSPO2 expression levels in patients with ossification of the posterior longitudinal ligament were lower than those in spondylosis patients, and RSPO2 protein suppressed chondrogenic differentiation of human ligament cells. RSPO2 was induced by inflammatory stimulation and mechanical loading via nuclear factor κB. Rspo2+ cells may contribute to tendon/ligament homeostasis under pathogenic conditions.

11.
iScience ; 25(8): 104659, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35847558

RESUMO

Single-cell RNA sequencing (scRNAseq) has been used to assess the intra-tumor heterogeneity and microenvironment of pancreatic ductal adenocarcinoma (PDAC). However, previous knowledge is not fully universalized. Here, we built a single cell atlas of PDAC from six datasets containing over 70 samples and >130,000 cells, and demonstrated its application to the reanalysis of the previous bulk transcriptomic cohorts and inferring cell-cell communications. The cell decomposition of bulk transcriptomics using scRNAseq data showed the cellular heterogeneity of PDAC; moreover, high levels of tumor cells and fibroblasts were indicative of poor-prognosis. Refined tumor subtypes signature indicated the tumor cell dynamics in intra-tumor and their specific regulatory network. We further identified functionally distinct tumor clusters that had close interaction with fibroblast subtypes via different signaling pathways dependent on subtypes. Our analysis provided a reference dataset for PDAC and showed its utility in research on the microenvironment of intra-tumor heterogeneity.

12.
Curr Issues Mol Biol ; 44(2): 988-997, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35723350

RESUMO

Nematodes, such as Caenorhabditis elegans, have been instrumental to the study of cancer. Recently, their significance as powerful cancer biodiagnostic tools has emerged, but also for mechanism analysis and drug discovery. It is expected that nematode-applied technology will facilitate research and development on the human tumor microenvironment. In the history of cancer research, which has been spurred by numerous discoveries since the last century, nematodes have been important model organisms for the discovery of cancer microenvironment. First, microRNAs (miRNAs), which are noncoding small RNAs that exert various functions to control cell differentiation, were first discovered in C. elegans and have been actively incorporated into cancer research, especially in the study of cancer genome defects. Second, the excellent sense of smell of nematodes has been applied to the diagnosis of diseases, especially refractory tumors, such as human pancreatic cancer, by sensing complex volatile compounds derived from heterogeneous cancer microenvironment, which are difficult to analyze using ordinary analytical methods. Third, a nematode model system can help evaluate invadosomes, the phenomenon of cell invasion by direct observation, which has provided a new direction for cancer research by contributing to the elucidation of complex cell-cell communications. In this cutting-edge review, we highlight milestones in cancer research history and, from a unique viewpoint, focus on recent information on the contributions of nematodes in cancer research towards precision medicine in humans.

13.
Sci Rep ; 12(1): 11074, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773310

RESUMO

In pancreatic cancer, methyltransferase-like 3 (METTL3), a N(6)-methyladenosine (m6A) methyltransferase, has a favorable effect on tumors and is a risk factor for patients' prognosis. However, the details of what genes are regulated by METTL3 remain unknown. Several RNAs are methylated, and what genes are favored in pancreatic cancer remains unclear. By epitranscriptomic analysis, we report that polo-like kinase 1 (PLK1) is an important hub gene defining patient prognosis in pancreatic cancer and that RNA methylation is involved in regulating its cell cycle-specific expression. We found that insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) binds to m6A of PLK1 3' untranslated region and is involved in upregulating PLK1 expression and that demethylation of this site activates the ataxia telangiectasia and Rad3-related protein pathway by replicating stress and increasing mitotic catastrophe, resulting in increased radiosensitivity. This suggests that PLK1 methylation is essential for cell cycle maintenance in pancreatic cancer and is a new therapeutic target.


Assuntos
Adenocarcinoma , Adenosina , Proteínas de Ciclo Celular , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Adenosina/análogos & derivados , Adenosina/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homeostase , Humanos , Metilação , Metiltransferases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Quinase 1 Polo-Like , Neoplasias Pancreáticas
14.
Regen Ther ; 21: 52-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765544

RESUMO

Adipose-derived stem cells (ASCs) are an attractive cell source for cell therapy. Despite the increasing number of clinical applications, the methodology for ASC isolation is not optimized for every individual. In this study, we developed an effective material to stabilize explant cultures from small-fragment adipose tissues. Methods: Polypropylene/polyethylene nonwoven sheets were coated with hydroxyapatite (HA) particles. Adipose fragments were then placed on these sheets, and their ability to trap tissue was monitored during explant culture. The yield and properties of the cells were compared to those of cells isolated by conventional collagenase digestion. Results: Hydroxyapatite-coated nonwovens immediately trapped adipose fragments when placed on the sheets. The adhesion was stable even in culture media, leading to cell migration and proliferation from the tissue along with the nonwoven fibers. A higher fiber density further enhanced cell growth. Although cells on nonwoven explants could not be fully collected with cell dissociation enzymes, the cell yield was significantly higher than that of conventional monolayer culture without impacting stem cell properties. Conclusions: Hydroxyapatite-coated nonwovens are useful for the effective primary explant culture of connective tissues without enzymatic cell dissociation.

15.
Regen Ther ; 20: 72-77, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35509265

RESUMO

Introduction: Cell therapy using adipose-derived mesenchymal stem cells (ASCs) is a promising avenue of regenerative medicine for the treatment of various diseases. It has been considered that ASCs exert their therapeutic effects through the secretion of multiple factors that are critical for tissue remodeling or the suppression of inflammation. Recently, conditioned medium (CM) from ASCs that contains a complex of secreted factors has received attention as a cost-effective alternative to cell therapy. Methods: We investigated the effects of CM obtained from ASCs (ASCs-CM) using human dermal fibroblasts (hDFs) and human epidermal keratinocytes with or without interleukin (IL)-1ß and examined mRNA levels of marker genes. We also examined alterations in cell proliferation and morphology of hDFs following treatment with ASCs-CM. We further investigated the effects of ASCs-CM treatment on prevention of skin inflammation using a mouse model. Results: In hDFs and human epidermal keratinocytes, the ASCs-CM treatment suppressed pro-inflammatory factors and enhanced regenerative and remodeling factors with or without interleukin (IL)-1ß exposure. The ASCs-CM treatment also enhanced cell proliferation of hDFs and prevented morphological changes in response to IL-1ß exposure. Furthermore, in a mouse model of skin inflammation, treatment with ASCs-CM reduced the inflammatory reactions, including redness and thickness. Conclusions: CM from ASCs may represent a potential alternative to ASC therapy for the treatment of inflammatory skin conditions.

16.
Am J Physiol Cell Physiol ; 322(4): C787-C793, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294846

RESUMO

Similar to epigenetic DNA modification, RNA can be methylated and altered for stability and processing. RNA modifications, namely, epitranscriptomes, involve the following three functions: writing, erasing, and reading of marks. Methods for measurement and position detection are useful for the assessment of cellular function and human disease biomarkers. After pyrimidine 5-methylcytosine was reported for the first time a hundred years ago, numerous techniques have been developed for studying nucleotide modifications, including RNAs. Recent studies have focused on high-throughput and direct measurements for investigating the precise function of epitranscriptomes, including the characterization of severe acute respiratory syndrome coronavirus 2. The current study presents an overview of the development of detection techniques for epitranscriptomic marks and briefs about the recent progress in this field.


Assuntos
COVID-19 , Transcriptoma , Epigênese Genética , Humanos , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcriptoma/genética
17.
Cancer Sci ; 113(4): 1097-1104, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112433

RESUMO

Although cancer precision medicine has improved diagnosis and therapy, refractory cancers such as pancreatic cancer remain to be challenging targets. Clinical sequencing has identified the significant alterations in driver genes and traced their clonal evolutions. Recent studies indicated that the tumor microenvironment elicits alterations in cancer metabolism, although its involvement in the cause and development of genomic alterations has not been established. Genomic abnormalities can contribute to the survival of selected subpopulations, recently recognized as clonal evolution, and dysfunction can lead to DNA mutations. Here, we present the most recent studies on the mechanisms of cancer metabolism involved in the maintenance of genomic stability to update current understanding of such processes. Sirtuins, which are NAD+-dependent protein deacetylases, appear to be involved in the control of genomic stability. Alterations of deleterious subpopulations would be exposed to selective pressure for cell survival. Recent studies indicated that a new type of cell death, ferroptosis, determines the survival of clones and exert cancer-restricting or -promoting effects to surrounding cells in the tumor microenvironment. Suppressing genomic instability and eliminating deleterious clones by cell death will contribute to the improvement of cancer medicine. Furthermore, the elucidation of the mechanisms involved is seen as a bridgehead to the pharmacologic suppression of such refractory cancers as pancreatic cancer.


Assuntos
Evolução Clonal , Neoplasias Pancreáticas , Evolução Clonal/genética , Instabilidade Genômica , Genômica , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
18.
J Bone Miner Metab ; 40(2): 196-207, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34751824

RESUMO

INTRODUCTION: A disintegrin and metalloproteinase 17 (Adam17), also known as TNFα-converting enzyme (Tace), is a membrane-anchored protein involved in shedding of TNF, IL-6 receptor, ligands of epidermal growth factor receptor (EGFR), and Notch receptor. This study aimed to examine the role of Adam17 in adult articular cartilage and osteoarthritis (OA) pathophysiology. MATERIALS AND METHODS: Adam17 expression was examined in mouse knee joints during OA development. We analyzed OA development in tamoxifen-inducible chondrocyte-specific Adam17 knockout mice of a resection of the medial meniscus and medial collateral ligament (medial) model, destabilization of the medial meniscus (DMM) model, and aging model. We analyzed downstream pathways by in vitro experiments, and further performed intra-articular administration of an Adam17 inhibitor TAPI-0 for surgically induced mouse OA. RESULTS: Adam17 expression in mouse articular cartilage was increased by OA progression. In all models, Adam17 knockout mice showed ameliorated progression of articular cartilage degradation. Adam17 knockout decreased matrix metallopeptidase 13 (Mmp13) expression in both in vivo and in vitro experiments, whereas Adam17 activation by phorbol-12-myristate-13-acetate (PMA) increased Mmp13 and decreased aggrecan in mouse primary chondrocytes. Adam17 activation enhanced release of soluble TNF and transforming growth factor alpha, a representative EGF ligand, from mouse primary chondrocytes, while it did not change release of soluble IL-6 receptor or nuclear translocation of Notch1 intercellular domain. Intra-articular administration of the Adam17 inhibitor ameliorated OA progression. CONCLUSIONS: This study demonstrates regulation of OA development by Adam17, involvement of EGFR and TNF pathways, and the possibility of Adam17 as a therapeutic target for OA.


Assuntos
Proteína ADAM17/metabolismo , Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiopatologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Articulação do Joelho/fisiopatologia , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia
19.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680237

RESUMO

As cancer is a genetic disease, methylation defines a biologically malignant phenotype of cancer in the association of one-carbon metabolism-dependent S-adenosylmethionine (SAM) as a methyl donor in each cell. Methylated substances are involved in intracellular metabolism, but via intercellular communication, some of these can also be secreted to affect other substances. Although metabolic analysis at the single-cell level remains challenging, studying the "methylosystem" (i.e., the intercellular and intracellular communications of upstream regulatory factors and/or downstream effectors that affect the epigenetic mechanism involving the transfer of a methyl group from SAM onto the specific positions of nucleotides or other metabolites in the tumor microenvironment) and tracking these metabolic products are important research tasks for understanding spatial heterogeneity. Here, we discuss and highlight the involvement of RNA and nicotinamide, recently emerged targets, in SAM-producing one-carbon metabolism in cancer cells, cancer-associated fibroblasts, and immune cells. Their significance and implications will contribute to the discovery of efficient methods for the diagnosis of and therapeutic approaches to human cancer.

20.
Sci Rep ; 11(1): 17870, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504247

RESUMO

Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (ß-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated ß-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous ß-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.


Assuntos
Materiais Biocompatíveis/metabolismo , Regeneração Óssea/fisiologia , Substitutos Ósseos/metabolismo , Fosfatos de Cálcio/metabolismo , Osteogênese/fisiologia , Animais , Substitutos Ósseos/uso terapêutico , Transplante Ósseo/métodos , Diferenciação Celular/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...