Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 363(6430)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819937

RESUMO

The El Niño-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

3.
Nature ; 559(7715): 535-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046070

RESUMO

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Assuntos
El Niño Oscilação Sul , Mudança Climática , Clima Tropical , Movimentos da Água
4.
Sci Rep ; 7(1): 6568, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747719

RESUMO

Past severe droughts over North America have led to massive water shortages and increases in wildfire frequency. Triggering sources for multi-year droughts in this region include randomly occurring atmospheric blocking patterns, ocean impacts on atmospheric circulation, and climate's response to anthropogenic radiative forcings. A combination of these sources translates into a difficulty to predict the onset and length of such droughts on multi-year timescales. Here we present results from a new multi-year dynamical prediction system that exhibits a high degree of skill in forecasting wildfire probabilities and drought for 10-23 and 10-45 months lead time, which extends far beyond the current seasonal prediction activities for southwestern North America. Using a state-of-the-art earth system model along with 3-dimensional ocean data assimilation and by prescribing the external radiative forcings, this system simulates the observed low-frequency variability of precipitation, soil water, and wildfire probabilities in close agreement with observational records and reanalysis data. The underlying source of multi-year predictability can be traced back to variations of the Atlantic/Pacific sea surface temperature gradient, external radiative forcings, and the low-pass filtering characteristics of soils.

5.
Nat Commun ; 6: 6869, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25897996

RESUMO

Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation.

6.
Proc Natl Acad Sci U S A ; 107(5): 1833-7, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080684

RESUMO

Decadal-scale climate variations over the Pacific Ocean and its surroundings are strongly related to the so-called Pacific decadal oscillation (PDO) which is coherent with wintertime climate over North America and Asian monsoon, and have important impacts on marine ecosystems and fisheries. In a near-term climate prediction covering the period up to 2030, we require knowledge of the future state of internal variations in the climate system such as the PDO as well as the global warming signal. We perform sets of ensemble hindcast and forecast experiments using a coupled atmosphere-ocean climate model to examine the predictability of internal variations on decadal timescales, in addition to the response to external forcing due to changes in concentrations of greenhouse gases and aerosols, volcanic activity, and solar cycle variations. Our results highlight that an initialization of the upper-ocean state using historical observations is effective for successful hindcasts of the PDO and has a great impact on future predictions. Ensemble hindcasts for the 20th century demonstrate a predictive skill in the upper-ocean temperature over almost a decade, particularly around the Kuroshio-Oyashio extension (KOE) and subtropical oceanic frontal regions where the PDO signals are observed strongest. A negative tendency of the predicted PDO phase in the coming decade will enhance the rising trend in surface air-temperature (SAT) over east Asia and over the KOE region, and suppress it along the west coasts of North and South America and over the equatorial Pacific. This suppression will contribute to a slowing down of the global-mean SAT rise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...