Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2310, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485725

RESUMO

In type-II Weyl semimetals (WSMs), the tilting of the Weyl cones leads to the coexistence of electron and hole pockets that touch at the Weyl nodes. These electrons and holes experience the Berry curvature generated by the Weyl nodes, leading to an anomalous Hall effect that is highly sensitive to the Fermi level position. Here we have identified field-induced ferromagnetic MnBi2-xSbxTe4 as an ideal type-II WSM with a single pair of Weyl nodes. By employing a combination of quantum oscillations and high-field Hall measurements, we have resolved the evolution of Fermi-surface sections as the Fermi level is tuned across the charge neutrality point, precisely matching the band structure of an ideal type-II WSM. Furthermore, the anomalous Hall conductivity exhibits a heartbeat-like behavior as the Fermi level is tuned across the Weyl nodes, a feature of type-II WSMs that was long predicted by theory. Our work uncovers a large free carrier contribution to the anomalous Hall effect resulting from the unique interplay between the Fermi surface and diverging Berry curvature in magnetic type-II WSMs.

2.
Nano Lett ; 23(15): 6944-6950, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498750

RESUMO

The nature of superconductivity and its interplay with strong spin-orbit coupling at the KTaO3(111) interfaces remain a subject of debate. To address this problem, we grew epitaxial LaMnO3/KTaO3(111) heterostructures. We show that superconductivity is robust against the in-plane magnetic field, with the critical field of superconductivity reaching ∼25 T in optimally doped heterostructures. The superconducting order parameter is highly sensitive to the carrier density. We argue that spin-orbit coupling drives the formation of anomalous quasiparticles with vanishing magnetic moment, providing significant condensate immunity against magnetic fields beyond the Pauli paramagnetic limit. These results offer design opportunities for superconductors with extreme resilience against the applied magnetic fields.

3.
Angew Chem Int Ed Engl ; 61(4): e202114021, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34761504

RESUMO

A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

4.
J Am Chem Soc ; 144(1): 195-211, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939802

RESUMO

Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

5.
Inorg Chem ; 60(9): 6167-6175, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331784

RESUMO

We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.

6.
Angew Chem Int Ed Engl ; 59(32): 13305-13312, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32358911

RESUMO

Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250 K, involves the space group change Cc→Pc and is thermodynamically continuous, while the second, Pc→P1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.

7.
Nat Commun ; 10(1): 4043, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492877

RESUMO

In magnetoelectric materials, magnetic and dielectric/ferroelectric properties couple to each other. This coupling could enable lower power consumption and new functionalities in devices such as sensors, memories and transducers, since voltages instead of electric currents are sensing and controlling the magnetic state. We explore a different approach to magnetoelectric coupling in which we use the magnetic spin state instead of the more traditional ferro or antiferromagnetic order to couple to electric properties. In our molecular compound, magnetic field induces a spin crossover from the S = 1 to the S = 2 state of Mn3+, which in turn generates molecular distortions and electric dipoles. These dipoles couple to the magnetic easy axis, and form different polar, antipolar and paraelectric phases vs magnetic field and temperature. Spin crossover compounds are a large class of materials where the spin state can modify the structure, and here we demonstrate that this is a route to magnetoelectric coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...