Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10558, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732681

RESUMO

In the development of polymer materials, it is an important issue to explore the complex relationships between domain structure and physical properties. In the domain structure analysis of polymer materials, 1H-static solid-state NMR (ssNMR) spectra can provide information on mobile, rigid, and intermediate domains. But estimation of domain structure from its analysis is difficult due to the wide overlap of spectra from multiple domains. Therefore, we have developed a materials informatics approach that combines the domain modeling ( http://dmar.riken.jp/matrigica/ ) and the integrated analysis of meta-information (the elements, functional groups, additives, and physical properties) in polymer materials. Firstly, the 1H-static ssNMR data of 120 polymer materials were subjected to a short-time Fourier transform to obtain frequency, intensity, and T2 relaxation time for domains with different mobility. The average T2 relaxation time of each domain is 0.96 ms for Mobile, 0.55 ms for Intermediate (Mobile), 0.32 ms for Intermediate (Rigid), and 0.11 ms for Rigid. Secondly, the estimated domain proportions were integrated with meta-information such as elements, functional group and thermophysical properties and was analyzed using a self-organization map and market basket analysis. This proposed method can contribute to explore structure-property relationships of polymer materials with multiple domains.


Assuntos
Imageamento por Ressonância Magnética , Polímeros , Informática , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química
2.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499371

RESUMO

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides information on native structures and the dynamics for predicting and designing the physical properties of multi-component solid materials. However, such an analysis is difficult because of the broad and overlapping spectra of these materials. Therefore, signal deconvolution and prediction are great challenges for their ssNMR analysis. We examined signal deconvolution methods using a short-time Fourier transform (STFT) and a non-negative tensor/matrix factorization (NTF, NMF), and methods for predicting NMR signals and physical properties using generative topographic mapping regression (GTMR). We demonstrated the applications for macromolecular samples involved in cellulose degradation, plastics, and microalgae such as Euglena gracilis. During cellulose degradation, 13C cross-polarization (CP)-magic angle spinning spectra were separated into signals of cellulose, proteins, and lipids by STFT and NTF. GTMR accurately predicted cellulose degradation for catabolic products such as acetate and CO2. Using these methods, the 1H anisotropic spectrum of poly-ε-caprolactone was separated into the signals of crystalline and amorphous solids. Forward prediction and inverse prediction of GTMR were used to compute STFT-processed NMR signals from the physical properties of polylactic acid. These signal deconvolution and prediction methods for ssNMR spectra of macromolecules can resolve the problem of overlapping spectra and support macromolecular characterization and material design.


Assuntos
Celulose/química , Euglena gracilis/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Acetatos/química , Algoritmos , Anisotropia , Dióxido de Carbono/química , Análise de Fourier , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Plásticos , Poliésteres/química , Análise de Regressão , Termogravimetria
3.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340198

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is commonly used to characterize molecular complexity because it produces informative atomic-resolution data on the chemical structure and molecular mobility of samples non-invasively by means of various acquisition parameters and pulse programs. However, analyzing the accumulated NMR data of mixtures is challenging due to noise and signal overlap. Therefore, data-cleansing steps, such as quality checking, noise reduction, and signal deconvolution, are important processes before spectrum analysis. Here, we have developed an NMR measurement informatics tool for data cleansing that combines short-time Fourier transform (STFT; a time-frequency analytical method) and probabilistic sparse matrix factorization (PSMF) for signal deconvolution and noise factor analysis. Our tool can be applied to the original free induction decay (FID) signals of a one-dimensional NMR spectrum. We show that the signal deconvolution method reduces the noise of FID signals, increasing the signal-to-noise ratio (SNR) about tenfold, and its application to diffusion-edited spectra allows signals of macromolecules and unsuppressed small molecules to be separated by the length of the T2* relaxation time. Noise factor analysis of NMR datasets identified correlations between SNR and acquisition parameters, identifying major experimental factors that can lower SNR.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Algoritmos , Análise Fatorial , Modelos Teóricos , Razão Sinal-Ruído
4.
ACS Omega ; 4(2): 3361-3369, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459550

RESUMO

InterSpin (http://dmar.riken.jp/interspin/) comprises integrated, supportive, and freely accessible preprocessing webtools and a database to advance signal assignment in low- and high-field NMR analyses of molecular complexities ranging from small molecules to macromolecules for food, material, and environmental applications. To support handling of the broad spectra obtained from solid-state NMR or low-field benchtop NMR, we have developed and evaluated two preprocessing tools: sensitivity improvement with spectral integration, which enhances the signal-to-noise ratio by spectral integration, and peaks separation, which separates overlapping peaks by several algorithms, such as non-negative sparse coding. In addition, the InterSpin Laboratory Information Management System (SpinLIMS) database stores numerous standard spectra ranging from small molecules to macromolecules in solid and solution states (dissolved in polar/nonpolar solvents), and can be searched under various conditions using the following molecular assignment tools. SpinMacro supports easy assignment of macromolecules in natural mixtures via solid-state 13C peaks and dimethyl sulfoxide-dissolved 1H-13C correlation peaks. InterAnalysis improves the accuracy of molecular assignment by integrated analysis of 1H-13C correlation peaks and 1H-J correlation peaks of small molecules dissolved in D2O or deuterated methanol, which supports easy narrowing down of metabolite candidates. Finally, by enabling database interoperability, SpinLIMS's client software will ultimately support scientific discovery by facilitating sharing and reusing of NMR data.

5.
Chem Sci ; 9(43): 8213-8220, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30542569

RESUMO

Various chemical shift predictive methodologies have been studied and developed, but there remains the problem of prediction accuracy. Assigning the NMR signals of metabolic mixtures requires high predictive performance owing to the complexity of the signals. Here we propose a new predictive tool that combines quantum chemistry and machine learning. A scaling factor as the objective variable to correct the errors of 2355 theoretical chemical shifts was optimized by exploring 91 machine learning algorithms and using the partial structure of 150 compounds as explanatory variables. The optimal predictive model gave RMSDs between experimental and predicted chemical shifts of 0.2177 ppm for δ 1H and 3.3261 ppm for δ 13C in the test data; thus, better accuracy was achieved compared with existing empirical and quantum chemical methods. The utility of the predictive model was demonstrated by applying it to assignments of experimental NMR signals of a complex metabolic mixture.

6.
Magn Reson Chem ; 55(2): 120-127, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27549366

RESUMO

Non-targeted nuclear magnetic resonance (NMR)-based metabolic profiling was applied to potato leaves to survey metabolic changes associated with late blight resistance under field conditions. Potato plants were grown in an experimental field, and the compound leaves with no visible symptoms were collected from 20 cultivars/lines at two sampling time points: (i) the time of initial presentation of symptoms in susceptible cultivars and (ii) 12 days before this initiation. 1 H NMR spectra of the foliar metabolites soluble in deuterium oxide- or methanol-d4 -based buffers were measured and used for multivariate analysis. Principal component analysis for six cultivars at symptom initiation showed a class separation corresponding to their levels of late blight resistance. This separation was primarily explained by higher levels of malic acid, methanol, and rutin and a lower level of sucrose in the resistant cultivars than in the susceptible ones. Partial least squares regression revealed that the levels of these metabolites were strongly associated with the disease severity measured in this study under field conditions. These associations were observed only for the leaves harvested at the symptom initiation stage, but not for those collected 12 days beforehand. Subsequently, a simple, alternative enzymatic assay for l-malic acid was used to estimate late blight resistance, as a model for applying the potential metabolic marker obtained. This study demonstrated the potential of metabolomics for field-grown plants in combination with targeted methods for quantifying marker levels, moving towards marker-assisted screening of new cultivars with durable late blight resistance. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Doenças das Plantas/prevenção & controle , Folhas de Planta/metabolismo , Solanum tuberosum/metabolismo , Resistência à Doença , Meio Ambiente , Extratos Vegetais/metabolismo
7.
Metabolites ; 6(4)2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27775560

RESUMO

Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D2O) and 131 hydrophobic (extracted in CDCl3) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N-oxide.

8.
J Phys Chem B ; 120(14): 3479-87, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26963288

RESUMO

NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.


Assuntos
Metabolômica , Simulação de Dinâmica Molecular , Teoria Quântica , Espectroscopia de Ressonância Magnética , Conformação Molecular
9.
Anal Chem ; 88(1): 659-65, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26624790

RESUMO

A new Web-based tool, SpinCouple, which is based on the accumulation of a two-dimensional (2D) (1)H-(1)H J-resolved NMR database from 598 metabolite standards, has been developed. The spectra include both J-coupling and (1)H chemical shift information; those are applicable to a wide array of spectral annotation, especially for metabolic mixture samples that are difficult to label through the attachment of (13)C isotopes. In addition, the user-friendly application includes an absolute-quantitative analysis tool. Good agreement was obtained between known concentrations of 20-metabolite mixtures versus the calibration curve-based quantification results obtained from 2D-Jres spectra. We have examined the web tool availability using nine series of biological extracts, obtained from animal gut and waste treatment microbiota, fish, and plant tissues. This web-based tool is publicly available via http://emar.riken.jp/spincpl.


Assuntos
Bases de Dados Factuais , Internet , Metabolômica/métodos , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/normas , Metabolômica/normas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética/normas , Padrões de Referência , Extratos de Tecidos/química
10.
Springerplus ; 3: 704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26034693

RESUMO

Whereas the Dirac delta function introduced by P. A. M. Dirac in 1930 to develop his theory of quantum mechanics has been well studied, a not famous formula related to the delta function using the Heaviside step function in a single-variable form, also given by Dirac, has been poorly studied. Following Dirac's method, we demonstrate the decomposition of a multivariate function into a sum of integrals in which each integrand is composed of a derivative of the function and a direct product of Heaviside step functions. It is an extension of Dirac's single-variable form to that for multiple variables.

11.
Carbohydr Polym ; 90(3): 1197-203, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22939331

RESUMO

(13)C-labeled amorphous cellulose and (13)C NMR chemical shifts by 2D (13)C-(13)C correlation spectroscopy were obtained in the regenerated solid-state from ionic liquids. On the basis of the assigned chemical shifts, combined with information from molecular dynamics and quantum chemistry computer simulations a twisted structure for amorphous cellulose is proposed exposing more hydrophilic surface than that of extended crystalline cellulose.


Assuntos
Celulose/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Acinetobacter/química , Configuração de Carboidratos , Isótopos de Carbono/química
12.
Biomacromolecules ; 13(5): 1323-30, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22489745

RESUMO

A statistical approach was used to characterize the heterogeneous structures of bacterial cellulose samples pretreated with four kinds of ionic liquids (ILs). The structural heterogeneity of these samples was measured by Fourier transform infrared spectroscopy as well as solid-state NMR methods such as cross-polarization magic-angle spinning and dipolar-assisted rotational resonance. The obtained data matrices were then evaluated by principal components analysis. The measured 1-D data clearly revealed the modification of crystalline cellulose; in addition, the statistical approach revealed subtle structural changes that occurred upon pretreatment with different kinds of ILs. To investigate whether such regenerated structural changes occurred because of solubilization, we examined the intermolecular nuclear Overhauser effect between cellulose and an IL. Our results clarify how the nucleophilic imidazole is attacked and suggest that the cation of the IL is associated with the collapse of hydrogen bonds in cellulose.


Assuntos
Celulose/química , Gluconacetobacter xylinus/química , Líquidos Iônicos/química , Ligação de Hidrogênio , Imidazóis/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
13.
PLoS One ; 7(2): e30263, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319563

RESUMO

Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/.


Assuntos
Ecossistema , Metabolômica/métodos , Metagenômica/métodos , Técnicas Microbiológicas/métodos , Software , Biomassa , Biologia Computacional/métodos , Internet , Métodos
14.
Anal Chem ; 83(3): 719-26, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21208007

RESUMO

Nuclear magnetic resonance (NMR) has become a key technology in metabolomics, with the use of stable isotope labeling and advanced heteronuclear multidimensional NMR techniques. In this paper, we focus on the evaluation of extraction solvents to improve NMR-based methodologies for metabolomics. Line broadening is a serious barrier to detecting signals and the annotation of metabolites using multidimensional NMR. We evaluated a series of NMR solvents for easy and versatile single-step extraction using the (13)C-labeled photosynthetic bacterium Rhodobacter sphaeroides, which shows pronounced broadening of NMR signals. The performance of each extraction solvent was judged using 2D (1)H-(13)C heteronuclear single quantum coherence (HSQC) spectra, considering three metrics: (1) distribution of the line width at half height, (2) number of observed signals, and (3) the total observed signal intensity. Considering the total rank values for the three metrics, we chose methanol-d(4) (MeOD) as a semipolar extraction solvent that can sufficiently sharpen the line width and affords better-quality NMR spectra. We also evaluated the series of extraction solvents by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) based ionomics approach. It was also indicated that MeOD is useful for excluding paramagnetic ions as well as macromolecules in an easy single-step extraction. MeOD extraction also appeared to be effective for other bacterial and animal samples. An additional advantage of this semipolar solvent is that it supplements the aqueous (polar) buffer system reported by many groups. The flexible, appropriate application of polar and semipolar extraction should contribute to the large-scale analysis of metabolites.


Assuntos
Metabolômica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Solventes/química , Animais , Arabidopsis/química , Bombyx/química , Isótopos de Carbono/química , Escherichia coli/química , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Populus/química , Rhodobacter/química
15.
J Proteome Res ; 10(2): 824-36, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21058740

RESUMO

"Omics" studies reported to date have dealt with either thoroughly characterized single species or poorly explored meta-microbial communities. However, these techniques are capable of producing highly informative data for the analysis of interactions between two organisms. We examined the bacterial interaction between Escherichia coli O157:H7 (O157) and Bifidobacterium longum (BL) as a pathogenic-commensal bacterial model creating a minimum microbial ecosystem in the gut using dynamic omics approaches, consisting of improved time-lapse 2D-nuclear magnetic resonance (NMR) metabolic profiling, transcriptomic, and proteomic analyses. Our study revealed that the minimum ecosystem was established by bacterial adaptation to the changes in the extracellular environment, primarily by O157, but not by BL. Additionally, the relationship between BL and O157 could be partially regarded as that between a producer and a consumer of nutrients, respectively, especially with regard to serine and aspartate metabolism. Taken together, our profiling system can provide a new insight into the primary metabolic dynamics in microbial ecosystems.


Assuntos
Bifidobacterium/metabolismo , Escherichia coli O157/metabolismo , Metaboloma , Metabolômica/métodos , Interações Microbianas/fisiologia , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bifidobacterium/fisiologia , Isótopos de Carbono , Análise por Conglomerados , Técnicas de Cocultura , Escherichia coli O157/fisiologia , Perfilação da Expressão Gênica , Genômica , Marcação por Isótopo , Redes e Vias Metabólicas , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Análise de Componente Principal , Proteoma/metabolismo , Serina/metabolismo
16.
BMC Bioinformatics ; 11: 113, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20193068

RESUMO

BACKGROUND: Efficient dissection of large proteins into their structural domains is critical for high throughput proteome analysis. So far, no study has focused on mathematically modeling a protein dissection protocol in terms of a production system. Here, we report a mathematical model for empirically optimizing the cost of large-scale domain production in proteomics research. RESULTS: The model computes the expected number of successfully producing soluble domains, using a conditional probability between domain and boundary identification. Typical values for the model's parameters were estimated using the experimental results for identifying soluble domains from the 2,032 Kazusa HUGE protein sequences. Among the 215 fragments corresponding to the 24 domains that were expressed correctly, 111, corresponding to 18 domains, were soluble. Our model indicates that, under the conditions used in our pilot experiment, the probability of correctly predicting the existence of a domain was 81% (175/215) and that of predicting its boundary was 63% (111/175). Under these conditions, the most cost/effort-effective production of soluble domains was to prepare one to seven fragments per predicted domain. CONCLUSIONS: Our mathematical modeling of protein dissection protocols indicates that the optimum number of fragments tested per domain is actually much smaller than expected a priori. The application range of our model is not limited to protein dissection, and it can be utilized for designing various large-scale mutational analyses or screening libraries.


Assuntos
Modelos Teóricos , Proteínas/química , Proteômica/métodos , Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Proteoma/química
17.
Anal Chem ; 82(5): 1653-8, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20128615

RESUMO

NMR-based metabolomics has become a practical and analytical methodology for discovering novel genes, biomarkers, metabolic phenotypes, and dynamic cell behaviors in organisms. Recent developments in NMR-based metabolomics, however, have not concentrated on improvements of comprehensiveness in terms of simultaneous large-scale metabolite detections. To resolve this, we have devised and implemented a statistical index, the SpinAssign p-value, in NMR-based metabolomics for large-scale metabolite annotation and publicized this information. It enables simultaneous annotation of more than 200 candidate metabolites from the single (13)C-HSQC (heteronuclear single quantum coherence) NMR spectrum of a single sample of cell extract.


Assuntos
Metabolômica , Ressonância Magnética Nuclear Biomolecular/métodos
18.
Anal Chem ; 82(5): 1643-52, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20121204

RESUMO

In metabolomic analyses, care should be exercised as to which metabolites are extracted from the sample and which remain in the residue; the remaining metabolites are typically discarded following the extraction process. In this study, nuclear magnetic resonance (NMR)-based metabolomics was used to visualize plant metabolite profiles throughout a series of repeated extraction processes. Metabolites remaining in the extraction residues of (13)C-labeled Arabidopsis thaliana were recovered by repeated extraction using methanol-d(4) and deuterium oxide. The soluble extracts and residual pellets from each step of the extraction process were analyzed by both solution-state and high-resolution magic angle spinning NMR. Metabolic profiling based on chemical shifts in two-dimensional (1)H-(13)C heteronuclear single-quantum coherence spectra allowed the elucidation of both structural and chemical properties. In addition to the metabolite profile, there appears to be a relationship between metabolite structure and behavior throughout the repeated extraction process. These approaches suggest that metabolites are not always extracted in a single step and that the distribution of metabolites in an extraction scenario cannot be predicted solely on the basis of solubility or polarity. The composition of all metabolites in cells influences the solubility of each metabolite; thus, particular attention should be paid because changes in only a portion of the metabolites could influence the entire metabolite profile in a solvent extract.


Assuntos
Arabidopsis/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos
19.
PLoS One ; 4(3): e4893, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19287504

RESUMO

BACKGROUND: Environmental processes in ecosystems are dynamically altered by several metabolic responses in microorganisms, including intracellular sensing and pumping, battle for survival, and supply of or competition for nutrients. Notably, intestinal bacteria maintain homeostatic balance in mammals via multiple dynamic biochemical reactions to produce several metabolites from undigested food, and those metabolites exert various effects on mammalian cells in a time-dependent manner. We have established a method for the analysis of bacterial metabolic dynamics in real time and used it in combination with statistical NMR procedures. METHODOLOGY/PRINCIPAL FINDINGS: We developed a novel method called real-time metabolotyping (RT-MT), which performs sequential (1)H-NMR profiling and two-dimensional (2D) (1)H, (13)C-HSQC (heteronuclear single quantum coherence) profiling during bacterial growth in an NMR tube. The profiles were evaluated with such statistical methods as Z-score analysis, principal components analysis, and time series of statistical TOtal Correlation SpectroScopY (TOCSY). In addition, using 2D (1)H, (13)C-HSQC with the stable isotope labeling technique, we observed the metabolic kinetics of specific biochemical reactions based on time-dependent 2D kinetic profiles. Using these methods, we clarified the pathway for linolenic acid hydrogenation by a gastrointestinal bacterium, Butyrivibrio fibrisolvens. We identified trans11, cis13 conjugated linoleic acid as the intermediate of linolenic acid hydrogenation by B. fibrisolvens, based on the results of (13)C-labeling RT-MT experiments. In addition, we showed that the biohydrogenation of polyunsaturated fatty acids serves as a defense mechanism against their toxic effects. CONCLUSIONS: RT-MT is useful for the characterization of beneficial bacterium that shows potential for use as probiotic by producing bioactive compounds.


Assuntos
Butyrivibrio/metabolismo , Homeostase , Hidrogênio/metabolismo , Ácido Linoleico/metabolismo , Ressonância Magnética Nuclear Biomolecular
20.
In Silico Biol ; 8(3-4): 339-45, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19032166

RESUMO

PRIMe (http://prime.psc.riken.jp/), the Platform for RIKEN Metabolomics, is a Web site that has been designed and implemented to support research and analysis workflows ranging from metabolome to transcriptome analysis. The site provides access to a growing collection of standardized measurements of metabolites obtained by using NMR, GC-MS, LC-MS, and CE-MS, and metabolomics tools that support related analyses (SpinAssign for the identification of metabolites by means of NMR, KNApSAcK for searches within metabolite databases). In addition, the transcriptomics tools provide Correlated Gene Search, and Cluster Cutting for the analysis of mRNA expression. Use of the tools and database can contribute to the analysis of biological events at the levels of metabolites and gene expression, and we describe one example of such an analysis for Arabidopsis thaliana using the batch-learning self-organizing map (BL-SOM), which is provided via the Web site.


Assuntos
Bases de Dados Factuais , Perfilação da Expressão Gênica/métodos , Internet , Metabolômica/métodos , Sistemas de Gerenciamento de Base de Dados , Metaboloma , Ressonância Magnética Nuclear Biomolecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA