Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rinsho Shinkeigaku ; 2024 May 30.
Artigo em Japonês | MEDLINE | ID: mdl-38811203

RESUMO

Malfunction of the basal ganglia leads to movement disorders such as Parkinson's disease, dystonia, Huntington's disease, dyskinesia, and hemiballism, but their underlying pathophysiology is still subject to debate. To understand their pathophysiology in a unified manner, we propose the "dynamic activity model", on the basis of alterations of cortically induced responses in individual nuclei of the basal ganglia. In the normal state, electric stimulation in the motor cortex, mimicking cortical activity during initiation of voluntary movements, evokes a triphasic response consisting of early excitation, inhibition, and late excitation in the output stations of the basal ganglia of monkeys, rodents, and humans. Among three components, cortically induced inhibition, which is mediated by the direct pathway, releases an appropriate movement at an appropriate time by disinhibiting thalamic and cortical activity, whereas early and late excitation, which is mediated by the hyperdirect and indirect pathways, resets on-going cortical activity and stops movements, respectively. Cortically induced triphasic response patterns are systematically altered in various movement disorder models and could well explain the pathophysiology of their motor symptoms. In monkey and mouse models of Parkinson's disease, cortically induced inhibition is reduced and prevents the release of movements, resulting in akinesia/bradykinesia. On the other hand, in a mouse model of dystonia, cortically induced inhibition is enhanced and releases unintended movements, inducing involuntary muscle contractions. Moreover, after blocking the subthalamic nucleus activity in a monkey model of Parkinson's disease, cortically induced inhibition is recovered and enables voluntary movements, explaining the underlying mechanism of stereotactic surgery to ameliorate parkinsonian motor signs. The "dynamic activity model" gives us a more comprehensive view of the pathophysiology underlying motor symptoms of movement disorders and clues for their novel therapies.

2.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290848

RESUMO

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Assuntos
Córtex Motor , Núcleo Subtalâmico , Masculino , Feminino , Animais , Haplorrinos , Núcleo Subtalâmico/fisiologia , Gânglios da Base , Córtex Motor/fisiologia , Neurônios/fisiologia
3.
Neurobiol Dis ; 190: 106362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992783

RESUMO

The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.


Assuntos
Globo Pálido , Núcleo Subtalâmico , Globo Pálido/metabolismo , Corpo Estriado , Gânglios da Base/fisiologia , Neurônios/metabolismo , Vias Neurais/fisiologia
4.
Mov Disord ; 38(12): 2145-2150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986211

RESUMO

Schematic illustration of cortically induced dynamic activity changes of the output nuclei of the basal ganglia (the internal segment of the globus pallidus, GPi and the substantia nigra pars reticulata, SNr) in the healthy and diseased states. The height of the dam along the time course controls the expression of voluntary movements. Its alterations could cause a variety of movement disorders, such as Parkinson's disease and hyperkinetic disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Doença de Parkinson , Humanos , Gânglios da Base , Globo Pálido , Substância Negra
5.
Cereb Cortex Commun ; 3(2): tgac022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769971

RESUMO

Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenetics in nonhuman primates (NHPs) remains limited. Recently, we developed an efficient optogenetic intracortical microstimulation method of the primary motor cortex (M1), which successfully induced forelimb movements in macaque monkeys. Here, we aimed to investigate how optogenetic M1 stimulation causes neural modulation in the local and remote brain regions in anesthetized monkeys using 7-tesla fMRI. We demonstrated that optogenetic stimulation of the M1 forelimb and hindlimb regions successfully evoked robust direct and remote fMRI activities. Prominent remote activities were detected in the anterior and posterior lobes in the contralateral cerebellum, which receive projections polysynaptically from the M1. We further demonstrated that the cerebro-cerebellar projections from these M1 regions were topographically organized, which is concordant with the somatotopic map in the cerebellar cortex previously reported in macaques and humans. The present study significantly enhances optogenetic fMRI in NHPs, resulting in profound understanding of the brain network, thereby accelerating the translation of findings from animal models to humans.

6.
Sci Rep ; 12(1): 6493, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444245

RESUMO

In parkinsonism, subthalamic nucleus (STN) electrical deep brain stimulation (DBS) improves symptoms, but may be associated with side effects. Adaptive DBS (aDBS), which enables modulation of stimulation, may limit side effects, but limited information is available about clinical effectiveness and efficaciousness. We developed a brain-machine interface for aDBS, which enables modulation of stimulation parameters of STN-DBS in response to γ2 band activity (80-200 Hz) of local field potentials (LFPs) recorded from the primary motor cortex (M1), and tested its effectiveness in parkinsonian monkeys. We trained two monkeys to perform an upper limb reaching task and rendered them parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Bipolar intracortical recording electrodes were implanted in the M1, and a recording chamber was attached to access the STN. In aDBS, the M1 LFPs were recorded, filtered into the γ2 band, and discretized into logic pulses by a window discriminator, and the pulses were used to modulate the interval and amplitude of DBS pulses. In constant DBS (cDBS), constant stimulus intervals and amplitudes were used. Reaction and movement times during the task were measured and compared between aDBS and cDBS. The M1-γ2 activities were increased before and during movements in parkinsonian monkeys and these activities modulated the aDBS pulse interval, amplitude, and dispersion. With aDBS and cDBS, reaction and movement times were significantly decreased in comparison to DBS-OFF. The electric charge delivered was lower with aDBS than cDBS. M1-γ2 aDBS in parkinsonian monkeys resulted in clinical benefits that did not exceed those from cDBS. However, M1-γ2 aDBS achieved this magnitude of benefit for only two thirds of the charge delivered by cDBS. In conclusion, M1-γ2 aDBS is an effective therapeutic approach which requires a lower electrical charge delivery than cDBS for comparable clinical benefits.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Transtornos Parkinsonianos , Núcleo Subtalâmico , Animais , Estimulação Encefálica Profunda/métodos , Haplorrinos , Córtex Motor/fisiologia , Núcleo Subtalâmico/fisiologia
7.
Nat Commun ; 13(1): 2233, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468893

RESUMO

The subthalamic nucleus projects to the external and internal pallidum, the modulatory and output nuclei of the basal ganglia, respectively, and plays an indispensable role in controlling voluntary movements. However, the precise mechanism by which the subthalamic nucleus controls pallidal activity and movements remains elusive. Here, we utilize chemogenetics to reversibly reduce neural activity of the motor subregion of the subthalamic nucleus in three macaque monkeys (Macaca fuscata, both sexes) during a reaching task. Systemic administration of chemogenetic ligands prolongs movement time and increases spike train variability in the pallidum, but only slightly affects firing rate modulations. Across-trial analyses reveal that the irregular discharges in the pallidum coincides with prolonged movement time. Reduction of subthalamic activity also induces excessive abnormal movements in the contralateral forelimb, which are preceded by subthalamic and pallidal phasic activity changes. Our results suggest that the subthalamic nucleus stabilizes pallidal spike trains and achieves stable movements.


Assuntos
Núcleo Subtalâmico , Animais , Gânglios da Base , Globo Pálido , Haplorrinos , Movimento
8.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35140075

RESUMO

The basal ganglia (BG) are crucial for a variety of motor and cognitive functions. Changes induced by persistent low-dopamine (e.g., in Parkinson's disease; PD) result in aberrant changes in steady-state population activity (ß band oscillations) and the transient response of the BG. Typically, a brief cortical stimulation results in a triphasic response in the substantia nigra pars reticulata (SNr; an output of the BG). The properties of the triphasic responses are shaped by dopamine levels. While mechanisms underlying aberrant steady state activity are well studied, it is still unclear which BG interactions are crucial for the aberrant transient responses in the BG. Moreover, it is also unclear whether mechanisms underlying the aberrant changes in steady-state activity and transient response are the same. Here, we used numerical simulations of a network model of BG to identify the key factors that determine the shape of the transient responses. We show that an aberrant transient response of the SNr in the low-dopamine state involves changes in the direct pathway and the recurrent interactions within the globus pallidus externa (GPe) and between GPe and subthalamic nucleus (STN). However, the connections from D2-type spiny projection neurons (D2-SPN) to GPe are most crucial in shaping the transient response and by restoring them to their healthy level, we could restore the shape of transient response even in low-dopamine state. Finally, we show that the changes in BG that result in aberrant transient response are also sufficient to generate pathologic oscillatory activity in the steady state.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Gânglios da Base/fisiologia , Dopamina/metabolismo , Globo Pálido , Humanos , Doença de Parkinson/metabolismo , Núcleo Subtalâmico/fisiologia
9.
Cereb Cortex ; 31(12): 5363-5380, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34268560

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by dopamine deficiency. To elucidate network-level changes through the cortico-basal ganglia pathways in PD, we recorded neuronal activity in PD monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We applied electrical stimulation to the motor cortices and examined responses in the internal (GPi) and external (GPe) segments of the globus pallidus, the output and relay nuclei of the basal ganglia, respectively. In the normal state, cortical stimulation induced a triphasic response composed of early excitation, inhibition, and late excitation in the GPi and GPe. In the PD state, cortically evoked inhibition in the GPi mediated by the cortico-striato-GPi "direct" pathway was largely diminished, whereas late excitation in the GPe mediated by the cortico-striato-GPe-subthalamo (STN)-GPe pathway was elongated. l-DOPA treatment ameliorated PD signs, particularly akinesia/bradykinesia, and normalized cortically evoked responses in both the GPi and GPe. STN blockade by muscimol injection ameliorated the motor deficit and unmasked cortically evoked inhibition in the GPi. These results suggest that information flow through the direct pathway responsible for the initiation of movements is largely reduced in PD and fails to release movements, resulting in akinesia/bradykinesia. Restoration of the information flow through the direct pathway recovers execution of voluntary movements.


Assuntos
Doença de Parkinson , Gânglios da Base , Globo Pálido/fisiologia , Humanos , Levodopa/farmacologia , Vias Neurais/fisiologia
10.
J Neurosci ; 41(25): 5502-5510, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34001630

RESUMO

The substantia nigra pars reticulata (SNr) is the output station of the basal ganglia and receives cortical inputs by way of the following three basal ganglia pathways: the cortico-subthalamo (STN)-SNr hyperdirect, the cortico-striato-SNr direct, and the cortico-striato-external pallido-STN-SNr indirect pathways. Compared with the classical direct and indirect pathways via the striatum, the functions of the hyperdirect pathway remain to be fully elucidated. Here we used a photodynamic technique to selectively eliminate the cortico-STN projection in male mice and observed neuronal activity and motor behaviors in awake conditions. After cortico-STN elimination, cortically evoked early excitation in the SNr was diminished, while the cortically evoked inhibition and late excitation, which are delivered through the direct and indirect pathways, respectively, were unchanged. In addition, locomotor activity was significantly increased after bilateral cortico-STN elimination, and apomorphine-induced ipsilateral rotations were observed after unilateral cortico-STN elimination, suggesting that cortical activity was increased. These results are compatible with the notion that the cortico-STN-SNr hyperdirect pathway quickly conveys cortical excitation to the output station of the basal ganglia, resets or suppresses the cortical activity related to ongoing movements, and prepares for the forthcoming movement.SIGNIFICANCE STATEMENT The basal ganglia play a pivotal role in the control of voluntary movements, and their malfunctions lead to movement disorders, such as Parkinson's disease and dystonia. Understanding their functions is important to find better treatments for such diseases. Here we used a photodynamic technique to selectively eliminate the projection from the motor cortex to the subthalamic nucleus, the input station of the basal ganglia, and found greatly reduced early excitatory signals from the cortex to the output station of the basal ganglia and motor hyperactivity. These results suggest that the neuronal signals through the cortico-subthalamic hyperdirect pathway reset or suppress ongoing movements and that blockade of this pathway may be beneficial for Parkinson's disease, which is characterized by oversuppression of movements.


Assuntos
Hipercinese/fisiopatologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Neurosci ; 41(12): 2668-2683, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563724

RESUMO

l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.


Assuntos
Gânglios da Base/fisiopatologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/toxicidade , Transmissão Sináptica/fisiologia , Animais , Gânglios da Base/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Transmissão Sináptica/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397806

RESUMO

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1-ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4-Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22-MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1-ADAM22-MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


Assuntos
Proteínas ADAM/genética , Epilepsia/genética , Guanilato Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Epilepsia/patologia , Epilepsia/prevenção & controle , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Moléculas de Adesão de Célula Nervosa/genética , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Superfamília Shaker de Canais de Potássio/genética
13.
Neurosci Res ; 164: 10-21, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32294524

RESUMO

Cerebellar outputs originate from the dentate nucleus (DN), project to the primary motor cortex (M1) via the motor thalamus, control M1 activity, and play an essential role in coordinated movements. However, it is unclear when and how the cerebellar outputs contribute to M1 activity. To address this question, we examined the response of M1 neurons to electrical stimulation of the DN and M1 activity during performance of arm-reaching tasks. Based on response patterns to DN stimulation, M1 neurons were classified into facilitation-, suppression-, and no-response-types. During tasks, not only facilitation- and suppression-type M1 neurons, but also no response-type M1 neurons increased or decreased their firing rates in relation to arm reaching movements. However, the firing rates of facilitation- and suppression-type neurons were higher than those of no-response-type neurons during both inter-trial intervals and arm reaching movements. These results imply that cerebellar outputs contribute to both spontaneous and movement-related activity in the M1, which help to maintain muscle tones and execute coordinated movements, although other inputs also contribute to movement-related activity. Pharmacological inactivation of the DN supports this notion, in that DN inactivation reduced both spontaneous firing rates and movement-related activity in the M1.


Assuntos
Córtex Motor , Animais , Braço , Cerebelo , Haplorrinos , Movimento
14.
Eur J Neurosci ; 53(7): 2178-2191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32649021

RESUMO

The basal ganglia play a crucial role in the control of voluntary movements. Neurons in both the external and internal segments of the globus pallidus, the connecting and output nuclei of the basal ganglia, respectively, change their firing rates in relation to movements. Firing rate changes of movement-related neurons seem to convey signals for motor control. On the other hand, coincident spikes among neurons, that is, correlated activity, may also contribute to motor control. To address this issue, we first identified multiple pallidal neurons receiving inputs from the forelimb regions of the primary motor cortex and supplementary motor area, recorded neuronal activity of these neurons simultaneously, and analyzed their spike correlations while monkeys performed a hand-reaching task. Most (79%) pallidal neurons exhibited task-related firing rate changes, whereas only a small fraction (20%) showed significant but small and short correlated activity during the task performance. These results suggest that motor control signals are conveyed primarily by firing rate changes in the external and internal segments of the globus pallidus and that the contribution of correlated activity may play only a minor role in the healthy state.


Assuntos
Globo Pálido , Neurônios , Animais , Gânglios da Base , Haplorrinos , Movimento
15.
Brain Nerve ; 72(11): 1159-1171, 2020 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-33191295

RESUMO

Network disorders of the basal ganglia may underlie the pathophysiology of movement disorders, such as Parkinson's disease and dystonia. The following models have been proposed to explain network disorders: (1) the firing rate model: an activity imbalance between the direct, indirect, and hyperdirect pathways induces changes in the mean firing rate of the output nuclei of the basal ganglia and causes hypokinetic or hyperkinetic movement disorders, (2) the firing pattern model: oscillatory and/or synchronized activity in the basal ganglia disturbs information processing in this area, resulting in motor symptoms and, (3) the dynamic activity model: abnormal neuronal modulations through the direct, indirect, and hyperdirect pathways disrupt the balance between movement-related inhibition and surrounding excitation in the output nuclei, which leads to motor symptoms. We present a critical analysis of these models in this review. Stereotactic surgery, which involves the application of high-frequency electrical stimulation (deep brain stimulation) or coagulation of a small area in the basal ganglia is an effective therapeutic strategy to treat movement disorders. We have also discussed the mechanism underlying the beneficial effects of stereotactic surgery.


Assuntos
Doença de Parkinson , Gânglios da Base , Humanos , Movimento , Neurônios , Doença de Parkinson/terapia
16.
J Neurosci ; 40(39): 7451-7463, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32847963

RESUMO

The subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia. Thus, clarifying how STN neuronal activity is controlled by the two inputs is crucial. Cortical stimulation evokes early excitation and late excitation in STN neurons, intervened by a short gap. Here, to examine the origin of each component of this biphasic response, we recorded neuronal activity in the STN, combined with electrical stimulation of the motor cortices and local drug application in two male monkeys (Macaca fuscata) in the awake state. Local application of glutamate receptor antagonists, a mixture of an AMPA/kainate receptor antagonist and an NMDA receptor antagonist, into the vicinity of recorded STN neurons specifically diminished early excitation. Blockade of the striatum (putamen) or GPe with local injection of a GABAA receptor agonist, muscimol, diminished late excitation in the STN. Blockade of striato-GPe transmission with local injection of a GABAA receptor antagonist, gabazine, into the GPe also abolished late excitation. These results indicate that cortically evoked early and late excitation in the STN is mediated by the cortico-STN glutamatergic hyperdirect and the cortico-striato-GPe-STN indirect pathways, respectively.SIGNIFICANCE STATEMENT Here we show that the subthalamic nucleus (STN), an input station of the basal ganglia, receives cortical inputs through the cortico-STN hyperdirect and cortico-striato-external pallido-STN indirect pathways. This knowledge is important for understanding not only the normal functions of the STN, but also the pathophysiology of STN-related disorders and therapy targeting the STN. Lesions or application of high-frequency stimulation in the STN ameliorates parkinsonian symptoms. These procedures could affect all components in the STN, such as afferent inputs through the hyperdirect and indirect pathways, and STN neuronal activity. If we can understand which component is most affected by such procedures, we may be able to identify more effective manipulation targets or methods to treat Parkinson's disease.


Assuntos
Potenciais Evocados , Córtex Motor/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Macaca fuscata , Masculino , Córtex Motor/efeitos dos fármacos , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Putamen/efeitos dos fármacos , Putamen/fisiologia , Piridazinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Núcleo Subtalâmico/efeitos dos fármacos
17.
Nat Commun ; 11(1): 3253, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591505

RESUMO

Optogenetics has become an indispensable tool for investigating brain functions. Although non-human primates are particularly useful models for understanding the functions and dysfunctions of the human brain, application of optogenetics to non-human primates is still limited. In the present study, we generate an effective adeno-associated viral vector serotype DJ to express channelrhodopsin-2 (ChR2) under the control of a strong ubiquitous CAG promoter and inject into the somatotopically identified forelimb region of the primary motor cortex in macaque monkeys. ChR2 is strongly expressed around the injection sites, and optogenetic intracortical microstimulation (oICMS) through a homemade optrode induces prominent cortical activity: Even single-pulse, short-duration oICMS evokes long-lasting repetitive firings of cortical neurons. In addition, oICMS elicits distinct forelimb movements and muscle activity, which are comparable to those elicited by conventional electrical ICMS. The present study removes obstacles to optogenetic manipulation of neuronal activity and behaviors in non-human primates.


Assuntos
Membro Anterior/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Optogenética , Animais , Channelrhodopsins/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Macaca , Neurônios/fisiologia , Estimulação Física
18.
Glia ; 68(11): 2330-2344, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32445516

RESUMO

Dystonin (Dst) is a causative gene for Dystonia musculorum (dt) mice, which is an inherited disorder exhibiting dystonia-like movement and ataxia with sensory degeneration. Dst is expressed in a variety of tissues, including the central nervous system and the peripheral nervous system (PNS), muscles, and skin. However, the Dst-expressing cell type(s) for dt phenotypes have not been well characterized. To address the questions whether the disruption of Dst in Schwann cells induces movement disorders and how much impact does it have on dt phenotypes, we generated Dst conditional knockout (cKO) mice using P0-Cre transgenic mice and Dst gene trap mice. First, we assessed the P0-Cre transgene-dependent Cre recombination using tdTomato reporter mice and then confirmed the preferential tdTomato expression in Schwann cells. In the Dst cKO mice, Dst mRNA expression was significantly decreased in Schwann cells, but it was intact in most of the sensory neurons in the dorsal root ganglion. Next, we analyzed the phenotype of Dst cKO mice. They exhibited a normal motor phenotype during juvenile periods, and thereafter, started exhibiting an ataxia. Behavioral tests and electrophysiological analyses demonstrated impaired motor abilities and slowed motor nerve conduction velocity in Dst cKO mice, but these mice did not manifest dystonic movements. Electron microscopic observation of the PNS of Dst cKO mice revealed significant numbers of hypomyelinated axons and numerous infiltrating macrophages engulfing myelin debris. These results indicate that Dst is important for normal PNS myelin organization and Dst disruption in Schwann cells induces late-onset neuropathy and sensory ataxia. MAIN POINTS: Dystonin (Dst) disruption in Schwann cells results in late-onset neuropathy and sensory ataxia. Dst in Schwann cells is important for normal myelin organization in the peripheral nervous system.


Assuntos
Ataxia , Distonia , Animais , Ataxia/genética , Distúrbios Distônicos , Distonina , Camundongos , Camundongos Transgênicos , Células de Schwann
19.
Int J Neural Syst ; 30(2): 2050010, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32019380

RESUMO

The changes in neuronal firing activity in the primary motor cortex (M1) and supplementary motor area (SMA) were compared in monkeys rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The neuronal dynamic was characterized using mathematical tools defined in different frameworks (rate, oscillations or complex patterns). Then, and for each cortical area, multivariate and discriminate analyses were further performed on these features to identify those important to differentiate between the normal and the pathological neuronal activity. Our results show a different order in the importance of the features to discriminate the pathological state in each cortical area which suggests that the M1 and the SMA exhibit dissimilarities in their neuronal alterations induced by parkinsonism. Our findings highlight the need for multiple mathematical frameworks to best characterize the pathological neuronal activity related to parkinsonism. Future translational studies are warranted to investigate the causal relationships between cortical region-specificities, dominant pathological hallmarks and symptoms.


Assuntos
Potenciais de Ação , Córtex Motor/fisiopatologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Potenciais de Ação/fisiologia , Animais , Ondas Encefálicas , Feminino , Modelos Lineares , Macaca fuscata , Masculino , Microeletrodos , Análise Multivariada , Dinâmica não Linear , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
20.
Neurosci Res ; 156: 66-79, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31991205

RESUMO

The present study compares the cortical local field potentials (LFPs) in the primary motor cortex (M1) and the supplementary motor area (SMA) of non-human primates rendered Parkinsonian with administration of dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The dynamic of the LFPs was investigated under several mathematical frameworks and machine learning was used to discriminate the recordings based on these features between healthy, parkinsonian with off-medication and parkinsonian with on-medication states. The importance of each feature in the discrimination process was further investigated. The dynamic of the LFPs in M1 and SMA was affected regarding its variability (time domain analysis), oscillatory activities (frequency domain analysis) and complex patterns (non-linear domain analysis). Machine learning algorithms achieved accuracy near 0.90 for comparisons between conditions. The TreeBagger algorithm provided best accuracy. The relative importance of these features differed with the cortical location, condition and treatment. Overall, the most important features included beta oscillation, fractal dimension, gamma oscillation, entropy and asymmetry of amplitude fluctuation. The importance of features in discriminating between normal and pathological states, and on- or off-medication states depends on the pair-comparison and it is region-specific. These findings are discussed regarding the refinement of current models for movement disorders and the development of on-demand therapies.


Assuntos
Córtex Motor , Transtornos Parkinsonianos , Animais , Macaca mulatta , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...