Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 256: 107244, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762942

RESUMO

Questing ticks carry various tick-borne pathogens (TBPs) that are responsible for causing tick-borne diseases (TBDs) in humans and animals around the globe, especially in the tropics and sub-tropics. Information on the distribution of ticks and TBPs in a specific geography is crucial for the formulation of mitigation measures against TBDs. Therefore, this study aimed to survey the TBPs in the questing tick population in Bangladesh. A total of 2748 questing hard ticks were collected from the pastures in Sylhet, Bandarban, Sirajganj, Dhaka, and Mymensingh districts through the flagging method. After morphological identification, the ticks were grouped into 142 pools based on their species, sexes, life stages, and collection sites. The genomic DNA extracted from tick specimens was screened for 14 pathogens, namely Babesia bigemina (AMA-1), Babesia bovis (RAP-1), Babesia naoakii (AMA-1), Babesia ovis (18S rRNA), Theileria luwenshuni (18S rRNA), Theileria annulata (Tams-1), Theileria orientalis (MPSP), Anaplasma marginale (groEL), Anaplasma phagocytophilum (16S rRNA), Anaplasma bovis (16S rRNA), Anaplasma platys (16S rRNA), Ehrlichia spp. (16S rRNA), Rickettsia spp. (gltA), and Borrelia (Bo.) spp. (flagellin B) using genus and species-specific polymerase chain reaction (PCR) assays. The prevalence of the detected pathogens was calculated using the maximum likelihood method (MLE) with 95 % confidence interval (CI). Among 2748 ixodid ticks, 2332 (84.86 %) and 416 (15.14 %) were identified as Haemaphysalis bispinosa and Rhipicephalus microplus, respectively. Haemaphysalis bispinosa was found to carry all the seven detected pathogens, while larvae of R. microplus were found to carry only Bo. theileri. Among the TBPs, the highest detection rate was observed in A. bovis (20/142 pools, 0.81 %, CI: 0.51-1.20), followed by T. orientalis (19/142 pools, 0.72 %, CI: 0.44-1.09), T. luwenshuni (9/142 pools, 0.34 %, CI: 0.16-0.62), B. ovis (4/142 pools, 0.15 %, CI: 0.05 - 0.34) and Bo. theileri (4/142 pools, 0.15 %, CI: 0.05-0.34), Ehrlichia ewingii (3/142 pools, 0.11 %, CI: 0.03-0.29), and Babesia bigemina (1/142, 0.04 %, CI: 0.00 - 0.16). This study reports the existence of T. luwenshuni, E. ewingii, and Bo. theileri in Bangladesh for the first time. The novel findings of this study are the foremost documentation of transovarian transmission of B. bigemina and E. ewingii in H. bispinosa and also provide primary molecular evidence on the presence of E. ewingii and Bo. theileri in H. bispinosa. Therefore, this study may shed light on the circulating TBPs in ticks in the natural environment and thereby advocate awareness among physicians and veterinarians to control and prevent TBDs in Bangladesh.


Assuntos
Babesia , Doenças Transmitidas por Carrapatos , Animais , Bangladesh/epidemiologia , Babesia/isolamento & purificação , Babesia/genética , Feminino , Masculino , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Theileria/isolamento & purificação , Theileria/genética , Theileria/classificação , Ixodidae/microbiologia , Ixodidae/parasitologia , Anaplasma/isolamento & purificação , Anaplasma/genética , Ehrlichia/isolamento & purificação , Ehrlichia/genética , Carrapatos/microbiologia , Carrapatos/parasitologia , DNA Bacteriano/genética , Humanos
2.
Vet Res Commun ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676858

RESUMO

INTRODUCTION: Tick-borne diseases (TBDs) pose a major hindrance to livestock production in countries with limited resources. Effective prevention and management of TBDs require a thorough understanding of disease vectors and pathogens. However, there is limited information on studies of bovine tick-borne pathogens (TBPs) using molecular methods in Malawi. This study aimed to detect TBPs of cattle populations in southern Malawi, which has the largest cattle population in the country. METHODOLOGY: A total of 220 blood samples from apparently healthy cattle were collected in six districts, and were screened for selected TBPs using polymerase chain reaction (PCR). RESULTS: The overall detection rate of TBPs was 72.3%. Among the detected pathogens, Babesia bigemina had the highest detection rate (34.5%), followed by Anaplasma marginale (23.2%), Anaplasma phagocytophilum (22.3%), Theileria taurotragi (22.3%), Theileria parva (15.5%), Anaplasma bovis (9.6%), Babesia bovis (7.3%), Theileria mutans (4.1%), and Babesia naoakii (2.7%). Among the positive samples, 64.2% were found to be co-infected with two or more TBPs, with the highest number of seven pathogens detected in a single sample. The study documents the existence of A. phagocytophilum, B. bovis, and B. naoakii in Malawian cattle for the first time. CONCLUSION: The findings herein demonstrate a significant burden of TBPs on cattle in Malawi, which gives a challenge in combating TBDs. The high TBP burden, along with the high co-infection frequencies in Malawian cattle necessitates the urgency to implement effective control strategies to enhance cattle production in the country.

3.
J Vet Med Sci ; 86(2): 150-159, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38171881

RESUMO

Ticks are vectors for transmitting tick-borne pathogens (TBPs) in animals and humans. Therefore, tick identification is necessary to understand the distribution of tick species and the pathogens they carry. Unfortunately, data on dog ticks and the TBPs they harbor in Malawi are incomplete. This study aimed to identify dog ticks and the TBPs they transmit in Malawi. One hundred thirty-two ticks were collected from 87 apparently healthy but infested domestic dogs in four districts of Malawi, which were pooled into 128 tick samples. The ticks were morphologically identified under a stereomicroscope using identification keys, and species identification was authenticated by polymerase chain reaction (PCR) through the amplification and sequencing of 12S rRNA and cytochrome c oxidase subunit I (CO1) genes. The tick species identified were Rhipicephalus sanguineus sensu lato (58.3%), Haemaphysalis elliptica (32.6%), and Hyalomma truncatum (9.1%). Screening for TBPs using species-specific PCR assays revealed that 48.4% of the ticks were infected with at least one TBP. The TBP detection rates were 13.3% for Anaplasma platys, 10.2% for Babesia rossi, 8.6% for B. vogeli, 6.3% for Ehrlichia canis, 3.9% for A. phagocytophilum, 3.1% for B. gibsoni, 2.3% for B. canis and 0.8% for Hepatozoon canis. Co-infections of up to three pathogens were observed in 48.4% of the positive samples. This is the first study to identify dog ticks and the TBPs they harbor in Malawi. These findings provide the basis for understanding dog tick distribution and pathogens they carry in Malawi. This study necessitates the examination of ticks from more study locations to have a better picture of tick challenge, and the development of ticks and tick-borne disease control methods in Malawi.


Assuntos
Babesia , Doenças do Cão , Ixodidae , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Cães , Humanos , Animais , Malaui/epidemiologia , Babesia/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças do Cão/epidemiologia
4.
Parasitol Int ; 100: 102860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199521

RESUMO

Molecular surveillance of canine tick-borne pathogens (TBPs) in Bangladesh has constantly been undervalued. Therefore, the emergence of new pathogens often remains undetected. This study aimed to screen tick-borne pathogens in stray dogs and ticks in the Dhaka metropolitan area (DMA). Eighty-five dog blood and 53 ticks were collected in six city districts of DMA from September 2022 to January 2023. The ticks were identified by morphology. Screening of TBPs was performed by polymerase chain reaction (PCR), followed by sequencing. The PCR assays were conducted to analyze the 18S rRNA (Babesia gibsoni, B. vogeli, and Hepatozoon canis), 16S rRNA (Anaplasma phagocytophilum, A. platys, and A. bovis), gltA (Ehrlichia canis and Rickettsia spp.), flagellin B (Borrelia spp.) and 16-23S rRNA (Bartonella spp.). Three tick species, Rhipicephalus sanguineus (50/53), R. microplus (1/53), and Haemaphysalis bispinosa (2/53), were identified. Babesia gibsoni (38 out of 85) and A. platys (7 out of 85) were detected in dog blood. In contrast, four pathogens, B. gibsoni (1 out of 53), B. vogeli (1 out of 53), H. canis (22 out of 53), and A. platys (1 out of 53), were detected in the ticks. However, the detection rates of TBPs in dog blood and ticks were not correlated in this study. The phylogenetic analyses suggested that a single genotype for each of the four pathogens is circulating in DMA. This study reports the existence of B. vogeli, H. canis, and A. platys in Bangladesh for the first time.


Assuntos
Babesia , Doenças do Cão , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Animais , Cães , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Bangladesh/epidemiologia , Filogenia , RNA Ribossômico 16S/genética , Babesia/genética , Rhipicephalus sanguineus/genética , Rhipicephalus sanguineus/microbiologia , Doenças do Cão/diagnóstico , Anaplasma/genética
5.
Parasitol Int ; 97: 102790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544642

RESUMO

The emergence of Tick-borne Anaplasma spp. poses a significant threat to humans and animals worldwide. Traditional surveys based on examining blood smears overlook the existence of emerging pathogens. This study aimed to screen Anaplasma spp. in livestock species from diverse geographies with molecular tools. We collected 276 blood samples from cattle (Bos indicus), gayals (Bos frontalis) and goats (Capra hircus) in Jhenaidah, Bogura, Sirajganj and Bandarban districts, and Naikhongchari sub-district from June 2021 to March 2022. After that, a molecular screening was conducted through polymerase chain reaction (PCR) and sequencing was done to confirm the PCR results. The PCR assays were performed based on the analyses of groEL (Anaplasma marginale) and 16S rRNA (A. phagocytophilum and A. bovis). The Anaplasma spp. detected in this study were A. marginale (10.51%), A. phagocytophilum (0.72%), and A. bovis (63.77%). However, A. platys was not detected in this study. Among the screened pathogens, the detection of A. bovis (82.86%) was significantly high in the Bandarban district, while A. marginale was found only in cattle in this location. Regarding animal species, the occurrence of A. bovis was significantly higher in cattle. Moreover, the detection rate of A. marginale was significantly higher in adult cattle (≥2 years). The phylogenetic analyses revealed that the groEL sequences of A. marginale and 16S rRNA sequences of A. bovis and A. phagocytophilum were included in a single clade in the respective phylograms, showing a single genotype of each species circulating in Bangladesh. This study reports the existence of A. phagocytophilum in Bangladesh for the first time.


Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Animais , Bovinos , Humanos , Anaplasma marginale/genética , Anaplasmose/epidemiologia , Filogenia , Gado , RNA Ribossômico 16S/genética , Bangladesh/epidemiologia , Anaplasma/genética , Cabras , Doenças dos Bovinos/epidemiologia
6.
Microorganisms ; 11(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375065

RESUMO

Piroplasmosis, caused by Babesia spp. and Theileria spp., poses significant constraints for livestock production and upgradation in Bangladesh. Besides examining blood smears, few molecular reports are available from some selected areas in the country. Therefore, the actual scenario of piroplasmosis in Bangladesh is deficient. This study aimed to screen the piroplasms in different livestock species by molecular tools. A total of 276 blood samples were collected from cattle (Bos indicus), gayals (Bos frontalis) and goats (Capra hircus) in five geographies of Bangladesh. After that, screening was conducted through a polymerase chain reaction, and species were confirmed by sequencing. The prevalence of Babesia bigemina, B. bovis, B. naoakii, B. ovis, Theileria annulata and T. orientalis was 49.28%, 0.72%, 1.09%, 32.26%, 6.52% and 46.01%, respectively. The highest prevalence (79/109; 72.48%) of co-infections was observed with B. bigemina and T. orientalis. The phylogenetic analyses revealed that the sequences of B. bigemina (BbigRAP-1a), B. bovis (BboSBP-4), B. naoakii (AMA-1), B. ovis (ssu rRNA) and T. annulata (Tams-1) were included in one clade in the respective phylograms. In contrast, T. orientalis (MPSP) sequences were separated into two clades, corresponding to Types 5 and 7. To our knowledge, this is the first molecular report on piroplasms in gayals and goats in Bangladesh.

7.
Animals (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428398

RESUMO

Tick-borne diseases (TBDs) are a major hindrance to livestock production in pastoral communities of Africa. Although information on tick-borne infections is necessary for setting up control measures, this information is limited in the pastoral communities of Tanzania. Therefore, this study aimed to provide an overview of the tick-borne infections in the indigenous cattle of Tanzania. A total of 250 blood samples were collected from the indigenous zebu cattle in the Tanga region, Tanzania. Then, we conducted a molecular survey using the polymerase chain reaction (PCR) and gene sequencing to detect and identify the selected tick-borne pathogens. The PCR was conducted using assays, based on Theileria spp. (18S rRNA), Theileria parva (p104), Theileria mutans and T. taurotragi (V4 region of the 18S rRNA), Babesia bigemina (RAP-1a), B. bovis (SBP-2), Anaplasma marginale (heat shock protein groEL) and Ehrlichia ruminantium (pCS20). The PCR screening revealed an overall infection rate of (120/250, 48%) for T. mutans, (64/250, 25.6%) for T. parva, (52/250, 20.8%) for T. taurotragi, (33/250, 13.2%) for B. bigemina and (81/250, 32.4%) for A. marginale. Co-infections of up to four pathogens were revealed in 44.8% of the cattle samples. A sequence analysis indicated that T. parva p104 and A. marginale groEL genes were conserved among the sampled animals with sequence identity values of 98.92−100% and 99.88−100%, respectively. Moreover, the B. bigemina RAP-1a gene and the V4 region of the 18S rRNA of T. mutans genes were diverse among the sampled cattle, indicating the sequence identity values of 99.27−100% and 22.45−60.77%, respectively. The phylogenetic analyses revealed that the T. parva (p104) and A. marginale (groEL) gene sequences of this study were clustered in the same clade. In contrast, the B. bigemina (RAP-1a) and the T. mutans V4 region of the 18S rRNA gene sequences appeared in the different clades. This study provides important basement data for understanding the epidemiology of tick-borne diseases and will serve as a scientific basis for planning future control strategies in the study area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...