Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(13): e202300715, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38598189

RESUMO

Siderophores are structurally unique medicinal natural products and exhibit considerable therapeutic potential. Herein, we report the design and synthesis of azotochelin, a natural siderophore, and an extensive library of azotochelin analogs and their anticancer properties. We modified the carboxylic acid and the aromatic ring of azotochelin using various chemical motifs. We evaluated the cytotoxicity of the compounds against six different cancer cell lines (KB-3-1, SNB-19, MCF-7, K-562, SW-620, and NCI-H460) and a non-cancerous cell line (HEK-293). Among the twenty compounds tested, the IC50 values of nine compounds (14, 32, 35-40, and 54) were between 0.7 and 2.0 µM against a lung cancer cell line (NCI-H460). Moreover, several compounds showed good cytotoxicity profile (IC50 <10 µM) against the tested cancer cell lines. The flow cytometry analysis showed that compounds 36 and 38 induced apoptosis in NCI-H460 in a dose-dependent manner. The cell cycle analysis indicated that compounds 36 and 38 significantly arrested the cell cycle at the S phase to block cancer cell proliferation in the NCI-H460 cell line. The study has produced various novel azotochelin analogs that are potentially effective anticancer agents and lead compounds for further synthetic and medicinal chemistry exploration.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sideróforos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estrutura Molecular , Sideróforos/farmacologia , Sideróforos/química , Sideróforos/síntese química , Linhagem Celular Tumoral , Descoberta de Drogas , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/síntese química , Células HEK293
2.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232751

RESUMO

Due to the heterogeneity of breast cancer, current available treatment options are moderately effective at best. Hence, it is highly recommended to comprehend different subtypes, understand pathogenic mechanisms involved, and develop treatment modalities. The repurposing of an old FDA approved anti-malarial drug, amodiaquine (AQ) presents an outstanding opportunity to explore its efficacy in treating majority of breast cancer subtypes. Cytotoxicity, scratch assay, vasculogenic mimicry study, and clonogenic assay were employed to determine AQ's ability to inhibit cell viability, cell migration, vascular formation, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of AQ in MCF-7 and MDAMB-231 cell lines. Apoptosis assays, cell cycle analysis, RT-qPCR assays, and Western blot studies were performed to determine AQ's ability to induce apoptosis, cell cycle changes, gene expression changes, and induction of autophagy marker proteins. The results from in-vitro studies confirmed the potential of AQ as an anti-cancer drug. In different breast cancer cell lines tested, AQ significantly induces cytotoxicity, inhibit colony formation, inhibit cell migration, reduces 3D spheroid volume, induces apoptosis, blocks cell cycle progression, inhibit expression of cancer related genes, and induces LC3BII protein to inhibit autophagy. Our results demonstrate that amodiaquine is a promising drug to repurpose for breast cancer treatment, which needs numerous efforts from further studies.


Assuntos
Antimaláricos , Antineoplásicos , Neoplasias da Mama , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Reposicionamento de Medicamentos , Feminino , Humanos
3.
Curr Oncol ; 29(9): 6508-6522, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36135081

RESUMO

The Raf-MEK-ERK signaling network has been the subject of intense research due to its role in the development of human cancers, including pediatric neuroblastoma (NB). MEK and ERK are the central components of this signaling pathway and are attractive targets for cancer therapy. Approximately 3-5% of the primary NB samples and about 80% of relapsed samples contain mutations in the Raf-MEK-ERK pathway. In the present study, we analyzed the NB patient datasets and revealed that high RAF and MEK expression leads to poor overall survival and directly correlates with cancer progression and relapse. Further, we repurposed a specific small-molecule MEK inhibitor CI-1040 to inhibit the Raf-MEK-ERK pathway in NB. Our results show that CI-1040 potently inhibits NB cell proliferation and clonogenic growth in a dose-dependent manner. Inhibition of the Raf-MEK-ERK pathway by CI-1040 significantly enhances apoptosis, blocks cell cycle progression at the S phase, inhibits expression of the cell cycle-related genes, and significantly inhibits phosphorylation and activation of the ERK1/2 protein. Furthermore, CI-1040 significantly inhibits tumor growth in different NB 3D spheroidal tumor models in a dose-dependent manner and by directly inhibiting spheroidal tumor cells. Overall, our findings highlight that direct inhibition of the Raf-MEK-ERK pathway is a novel therapeutic approach for NB, and further developing repurposing strategies using CI-1040 is a clinically tractable strategy for effectively treating NB.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroblastoma , Benzamidas , Criança , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Transdução de Sinais
4.
Life Sci ; 306: 120843, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908620

RESUMO

AIMS: Malignant pleural mesothelioma (MPM) is a rare cancer of lungs' pleural cavity, with minimally effective therapies available. Thus, there exists a necessity for drug repurposing which is an attractive strategy for drug development in MPM. Repurposing of an old FDA-approved anti-leprotic drug, Clofazimine (CFZ), presents an outstanding opportunity to explore its efficacy in treating MPM. MAIN METHODS: Cytotoxicity, scratch assay, and clonogenic assays were employed to determine CFZ's ability to inhibit cell viability, cell migration, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of CFZ in MSTO-211H cell line. Gene expression analysis was performed using RT-qPCR assays to determine the CFZ's effect of key genes. Western blot studies were performed to determine CFZ's ability to induce apoptosis its effect to induce autophagy marker. KEY FINDINGS: CFZ showed significant cytotoxicity against both immortalized and primary patient-derived cell lines with IC50 values ranging from 3.4 µM (MSTO-211H) to 7.1 µM (HAY). CFZ significantly impaired MPM cell cloning efficiency, migration, and tumor spheroid formation. 3D Spheroid model showed that CFZ resulted in reduction in spheroid volume. RT-qPCR data showed downregulation of genes ß-catenin, BCL-9, and PRDX1; and upregulation of apoptosis markers such as PARP, Cleaved caspase 3, and AXIN2. Additionally, immunoblot analysis showed that CFZ down-regulates the expression of ß-catenin (apoptosis induction) and up-regulates p62, LC3B protein II (autophagy inhibition). SIGNIFICANCE: It can be concluded that CFZ could be a promising molecule to repurpose for MPM treatment which needs numerous efforts from further studies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , beta Catenina
5.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35631350

RESUMO

Polo-like kinase 1 (PLK1) is an essential cell cycle mitotic kinase component that plays an important role in cell cycle progression and has been reported to be involved in various cancers, including neuroblastoma (NB). PLK1 also regulates G2/M transition, chromosomal segregation, spindle assembly maturation, and mitotic exit. NB is an early embryonic-stage heterogeneous solid tumor and accounts for 15% of all pediatric cancer-related deaths. Therefore, we aimed to develop a targeting strategy for PLK1 by repurposing HMN-214 in NB. HMN-214 is a prodrug of HMN-176 and is known to selectively interfere with PLK1 function. In the present study, we performed the transcriptomic analysis of a large cohort of primary NB patient samples and revealed that PLK1 expression is inversely correlated with the overall survival of NB patients. Additionally, we found that PLK1 strongly correlates with NB disease and stage progression. HMN-214 significantly inhibited NB proliferation and colony formation in both MYCN-amplified and -nonamplified cell lines in a dose-dependent manner. Furthermore, HMN-214 induces apoptosis and significantly obstructs the cell cycle at the G2/M phase in NB cells by inhibiting multiple cell-cycle-related genes, such as PLK1, WEE1, CDK1, CDK2, Cyclin B1, CHK1, and CHK2. HMN-214 significantly inhibits cell cycle regulator CDK1 and the phosphorylation and activation of PLK1 in NB. In the NB 3D spheroid tumor model, HMN-214 significantly and in a dose-dependent manner inhibits spheroid tumor mass and growth. Overall, our study highlights that targeting PLK1 using HMN-214 is a novel therapeutic approach for NB.

6.
Cancers (Basel) ; 14(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205815

RESUMO

The dysregulation of PI3K, HDACs, and MYCN are well known for promoting multiple cancer types, including neuroblastoma (NB). Targeting the upstream regulators of MYCN, including HDACs and PI3K, was shown to suppress cancer growth. In the present study, we analyze different NB patient datasets to reveal that high PI3K and HDAC expression is correlated with overall poor NB patient survival. High PI3K level is also found to be associated with high MYCN level and NB stage progression. We repurpose a dual inhibitor CUDC-907 as a single agent to directly target both PI3K and HDAC in NB. We use in vitro methodologies to determine the efficacy and selectivity of CUDC-907 using six NB and three control fibroblast cell lines. Our results show that CUDC-907 significantly inhibits NB proliferation and colony growth, induces apoptosis, blocks cell cycle progression, inhibits MYCN, and enhances H3K9Ac levels by inhibiting the PI3K/AKT signaling pathway and HDAC function. Furthermore, CUDC-907 significantly inhibits NB tumor growth in a 3D spheroid tumor model that recapitulates the in vivo tumor growth. Overall, our findings highlight that the dual inhibition of PI3K and HDAC by CUDC-907 is an effective therapeutic strategy for NB and other MYC-dependent cancers.

7.
Transl Oncol ; 15(1): 101272, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823094

RESUMO

High-risk neuroblastoma (NB) represents a major clinical challenge in pediatric oncology due to relapse of metastatic, drug-resistant disease, and treatment-related toxicities. An analysis of 1235 primary NB patient dataset revealed significant increase in AKT1 and AKT2 gene expression with cancer stage progression. Additionally, Both AKT1 and AKT2 expression inversely correlate with poor overall survival of NB patients. AKT1 and AKT2 genes code for AKT that drive a major oncogenic cell signaling pathway known in many cancers, including NB. To inhibit AKT pathway, we repurposed an antiviral inhibitor BX-795 that inhibits PDK1, an upstream activator of AKT. BX-795 potently inhibits NB cell proliferation and colony growth in a dose-dependent manner. BX-795 significantly enhances apoptosis and blocks cell cycle progression at mitosis phase in NB. Additionally, BX-795 potently inhibits tumor formation and growth in a NB spheroid tumor model. We further tested dual therapeutic approaches by combining BX-795 with either doxorubicin or crizotinib and found synergistic and significant inhibition of NB growth, in contrast to either drug alone. Overall, our data demonstrate that BX-795 inhibits AKT pathway to inhibit NB growth, and combining BX-795 with current therapies is an effective and clinically tractable therapeutic approach for NB.

8.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494237

RESUMO

Novel coronavirus (COVID-19 or 2019-nCoV or SARS-CoV-2), which suddenly emerged in December 2019 is still haunting the entire human race and has affected not only the healthcare system but also the global socioeconomic balances. COVID-19 was quickly designated as a global pandemic by the World Health Organization as there have been about 98.0 million confirmed cases and about 2.0 million confirmed deaths, as of January 2021. Although, our understanding of COVID-19 has significantly increased since its outbreak, and multiple treatment approaches and pharmacological interventions have been tested or are currently under development to mitigate its risk-factors. Recently, some vaccine candidates showed around 95% clinical efficacy, and now receiving emergency use approvals in different countries. US FDA recently approved BNT162 and mRNA-1273 vaccines developed by Pfizer/BioNTech and Moderna Inc. for emergency use and vaccination in the USA. In this review, we present a succinct overview of the SARS-CoV-2 virus structure, molecular mechanisms of infection, COVID-19 epidemiology, diagnosis, and clinical manifestations. We also systematize different treatment strategies and clinical trials initiated after the pandemic outbreak, based on viral infection and replication mechanisms. Additionally, we reviewed the novel pharmacological intervention approaches and vaccine development strategies against COVID-19. We speculate that the current pandemic emergency will trigger detailed studies of coronaviruses, their mechanism of infection, development of systematic drug repurposing approaches, and novel drug discoveries for current and future pandemic outbreaks.


Assuntos
COVID-19/terapia , COVID-19/virologia , SARS-CoV-2/fisiologia , Antivirais/uso terapêutico , COVID-19/diagnóstico , COVID-19/epidemiologia , Vacinas contra COVID-19 , Humanos , Receptores Virais/metabolismo , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA