Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 144: 105496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734651

RESUMO

Cannabidiol (CBD) is present in Cannabis Sativa L. and has been used in medicines and foods to deliver beneficial health effects. Despite this, research on CBD safety utilising modern testing methods is lacking. Therefore three separate safety experiments were performed on a CBD isolate. Sprague-Dawley rats were used to investigate prenatal development, a 14-day toxicity sighting study, and an OECD compliant 90-day subchronic oral toxicity trial, with 35-day off-dose recovery. The prenatal screening study demonstrated reduced body weights and food consumption in the highest dose group, but no substance-related changes in pregnancy rate, maternal or placental gross abnormalities, or premature deliveries. The 14-day study indicated tolerance up to 460 mg/kg bw/d of CBD isolate. Based on these findings, a 90-day repeated dose oral toxicity study was performed at doses of 0, 30, 115, 230, and 460 mg/kg bw/d of CBD, followed by a 35-day off-dose recovery period. In the 90-day study, some non-adverse organ and tissue changes were observed. With the exception of the high dose group, these fully reversed during the recovery period. Based on these findings, sub-chronic consumption of highly purified isolate results in a CBD NOAEL of 460 mg/kg bw/d for males and 230 mg/kg bw/d for females.


Assuntos
Cannabis , Gravidez , Ratos , Feminino , Masculino , Animais , Ratos Sprague-Dawley , Cannabis/toxicidade , Testes de Toxicidade Subcrônica , Placenta , Tamanho do Órgão , Extratos Vegetais , Administração Oral
2.
Temperature (Austin) ; 9(2): 196-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106146

RESUMO

Exertional heat stress disrupts gastrointestinal permeability and, through subsequent bacterial translocation, can result in potentially fatal exertional heat stroke. Glutamine supplementation is a potential countermeasure although previously validated doses are not universally well tolerated. Ten males completed two 80-minute subclinical exertional heat stress tests (EHSTs) following either glutamine (0.3 g kg FFM-1) or placebo supplementation. Small intestinal permeability was assessed using the lactulose/rhamnose dual sugar absorption test and small intestinal epithelial injury using Intestinal Fatty-Acid Binding Protein (I-FABP). Bacterial translocation was assessed using the total 16S bacterial DNA and Bacteroides/total 16S DNA ratio. The glutamine bolus was well tolerated, with no participants reporting symptoms of gastrointestinal intolerance. Small intestinal permeability was not influenced by glutamine supplementation (p = 0.06) although a medium effect size favoring the placebo trial was observed (d = 0.73). Both small intestinal epithelial injury (p < 0.01) and Bacteroides/total 16S DNA (p = 0.04) increased following exertional heat stress, but were uninfluenced by glutamine supplementation. Low-dose acute oral glutamine supplementation does not protect gastrointestinal injury, permeability, or bacterial translocation in response to subclinical exertional heat stress.

3.
Nutrients ; 14(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631242

RESUMO

Oral cannabidiol (CBD) consumption is widespread in North America and Europe, as it has analgesic, neuroprotective and antitumor effects. Although oral CBD consumption in humans affords beneficial effects in epileptic and inflammatory states, its pharmacokinetics and subsequent uptake into tissue are largely unknown. This study investigated plasma pharmacokinetics and accumulation of CBD in gastrocnemius muscle, liver and adipose tissue in adult rats following oral gavage. CBD was fed relative to body mass at 0 (control), 30, 115, or 230 mg/Kg/day for 28 days; with 6 males and 6 females per dosing group. Pharmacokinetics were assessed on day 1 and day 28 in the group receiving CBD at 115 mg/Kg/day. The rise in tissue CBD was closely related to specific pharmacokinetic parameters, and adipose tissue levels were ~10 to ~100 fold greater than liver or muscle. Tissue CBD levels were moderately correlated between adipose and muscle, and adipose and liver, but were highly correlated for liver and muscle. CBD feeding resulted in several gender-specific effects, including changes in pharmacokinetics, relationships between pharmacokinetic parameters and tissue CBD and differences in tissue CBD levels. CBD accumulation in mammalian tissues has the potential to influence receptor binding and metabolism; therefore, the present findings may have relevance for developing oral dosing regimens.


Assuntos
Canabidiol , Tecido Adiposo , Animais , Feminino , Fígado , Masculino , Mamíferos , Músculo Esquelético , Plasma , Ratos
4.
Eur J Sport Sci ; 22(12): 1865-1876, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34726114

RESUMO

Purpose: Exertional-heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), can result in potentially fatal exertional-heat stroke. Acute glutamine (GLN) supplementation is a potential nutritional countermeasure, although the practical value of current supplementation regimens is questionable.Method: Ten males completed two high-intensity exertional-heat stress tests (EHST) involving running in the heat (40°C and 40% relative humidity) at lactate threshold to volitional exhaustion. Participants ingested GLN (0.3 g kg FFM-1) or a non-calorific placebo (PLA) one hour prior to the EHST. Venous blood was drawn pre-, post- and one-hour post-EHST. GI permeability was assessed using a serum dual-sugar absorption test (DSAT) and small intestinal epithelial injury using plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using the Bacteroides/total 16S DNA ratio.Results: Volitional exhaustion occurred after 22:19 ± 2:22 (minutes: seconds) in both conditions, during which whole-body physiological responses and GI symptoms were not different (p > 0.05). GI permeability (serum DSAT) was greater following GLN (0.043 ± 0.020) than PLA (0.034 ± 0.019) (p = 0.02; d = 0.47), but small intestine epithelial injury (I-FABP) increased comparably (p = 0.22; ηp2 = 0.16) following the EHST in both trials (GLN Δ = 1.25 ± 0.63 ng ml-1; PLA Δ = 0.92 ± 0.44 ng ml-1). GI MT (Bacteroides/total 16S DNA ratio) was unchanged in either condition following the EHST (p = 0.43).Conclusion: Acute low-dose (0.3 g kg-1 fat free mass) GLN supplementation ingested one hour before high-intesity exertional-heat stress worsened GI permeability, but did not influence either small intestinal epithilial injury or microbial translocation.Abbreviations: ANOVA: Analysis of variance; CV: Coefficient of Variation; DSAT: Dual Sugar Absorption Test; EDTA: Ethylenediaminetetraacetic acid; EHST: Exertional Heat Stress Test; ELISA: Enzyme Linked Immunosorbent Assay; FFM: Fat Free Mass; GI: Gastrointestinal; GFR: Glomerular Filtration Rate; GLN: Glutamine; HPLC: High Performance Liquid Chromatography; HR: Heart Rate; I-FABP: Intestinal Fatty-Acid Binding Protein; ISAK: International Society for the Advancement of Anthropometric Kinanthropometry; L/R: Lactulose-to-Rhamnose; LT: Lactate Threshold; MT: Microbial Translocation; mVAS: Modified Visual Analogue Scale; PBS: Phosphate-Buffered Saline; PLA: Placebo; qPCR: Quantitative Polymerase Chain Reaction; RH: Relative Humidity; RPE: Rate of Perceived Exertion; SD: Standard Deviation; SEM: Sensor Electronics Module; Tcore: Core Body Temperature; Tbody: Mean Body Temperature; Tskin: Mean Skin Temperature; TS: Thermal Sensation; V̇O2max: Maximal Oxygen Uptake.Highlights The pathophysiology of exertional-heat stroke is widely hypothesised to be at least in part attributable to a systemic inflammatory response caused by the leak of gastrointestinal microbes into the circulating blood.Acute high-dose (0.9 g kg FFM-1) L-glutamine supplementation is widely promoted as a practical strategy to protect gastrointestinal barrier integrity during exertional-heat stress. However, previously validated doses are often poorly tolerated and cannot be recommended for widespread implementation.This study examined the efficacy of low-dose (0.30 g kg FFM-1; ∼20 grams) acute L-glutamine supplementation on small intestinal injury, permeability, and microbial translocation in response a high-intensity exertional-heat stress test to exhaustion (20-30 min). This type of exercise accounts for the majority of exertional-heat stroke cases in the military.Despite being universally well-tolerated across all participants, acute low-dose L-glutamine supplementation worsened gastrointestinal permeability, without influencing either small intestinal injury or microbial translocation. These findings do not support the application of low-dose L-glutamine supplementation to help prevent exertional-heat stroke.


Assuntos
Transtornos de Estresse por Calor , Golpe de Calor , Humanos , Masculino , Suplementos Nutricionais , Glutamina , Resposta ao Choque Térmico , Lactatos , Permeabilidade , Poliésteres , Açúcares
5.
Eur J Sport Sci ; 22(1): 87-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33980120

RESUMO

The importance of diet and nutrition to military readiness and performance has been recognized for centuries as dietary nutrients sustain health, protect against illness, and promote resilience, performance and recovery. Contemporary military nutrition research is increasingly inter-disciplinary with emphasis often placed on the broad topics of (1) determining operational nutrition requirements in all environments, (2) characterizing nutritional practices of military personnel relative to the required (role/environment) standards, and (3) developing strategies for improving nutrient delivery and individual choices. This review discusses contemporary issues shared internationally by military nutrition research programmes, and highlights emerging topics likely to influence future military nutrition research and policy. Contemporary issues include improving the diet quality of military personnel, optimizing operational rations, and increasing understanding of biological factors influencing nutrient requirements. Emerging areas include the burgeoning field of precision nutrition and its technological enablers.


Assuntos
Militares , Dieta , Humanos , Nutrientes , Necessidades Nutricionais , Estado Nutricional
6.
Nutrients ; 12(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992440

RESUMO

l-Glutamine (GLN) is a conditionally essential amino acid which supports gastrointestinal (GI) and immune function prior to catabolic stress (e.g., strenuous exercise). Despite potential dose-dependent benefits, GI tolerance of acute high dose oral GLN supplementation is poorly characterised. Fourteen healthy males (25 ± 5 years; 1.79 ± 0.07 cm; 77.7 ± 9.8 kg; 14.8 ± 4.6% body fat) ingested 0.3 (LOW), 0.6 (MED) or 0.9 (HIGH) g·kg·FFM-1 GLN beverages, in a randomised, double-blind, counter-balanced, cross-over trial. Individual and accumulated GI symptoms were recorded using a visual analogue scale at regular intervals up to 24-h post ingestion. GLN beverages were characterised by tonicity measurement and microscopic observations. 24-h accumulated upper- and lower- and total-GI symptoms were all greater in the HIGH, compared to LOW and MED trials (p < 0.05). Specific GI symptoms (discomfort, nausea, belching, upper GI pain) were all more pronounced on the HIGH versus LOW GLN trial (p < 0.05). Nevertheless, most symptoms were still rated as mild. In comparison, the remaining GI symptoms were either comparable (flatulence, urge to regurgitate, bloating, lower GI pain) or absent (heart burn, vomiting, urge to defecate, abnormal stools, stitch, dizziness) between trials (p > 0.05). All beverages were isotonic and contained a dose-dependent number of GLN crystals. Acute oral GLN ingestion in dosages up to 0.9 g·kg·FFM-1 are generally well-tolerated. However, the severity of mild GI symptoms appeared dose-dependent during the first two hours post prandial and may be due to high-concentrations of GLN crystals.


Assuntos
Suplementos Nutricionais , Gastroenteropatias/tratamento farmacológico , Trato Gastrointestinal/efeitos dos fármacos , Glutamina/administração & dosagem , Adulto , Método Duplo-Cego , Flatulência , Gastroenteropatias/imunologia , Trato Gastrointestinal/fisiopatologia , Humanos , Masculino , Náusea , Projetos Piloto , Inquéritos e Questionários , Adulto Jovem
7.
Eur J Appl Physiol ; 120(10): 2325-2337, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794058

RESUMO

PURPOSE: Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, whereby subsequent microbial translocation (MT) can result in potentially serious health consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT following exertional-heat stress is poorly characterised. METHOD: Ten untrained (UT; VO2max = 45 ± 3 ml·kg-1·min-1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg-1·min-1) males completed an ecologically valid (military) 80-min fixed-intensity exertional-heat stress test (EHST). Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA. RESULTS: UT experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml-1) versus HT (0.20 ± 0.29 ng·ml-1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/total 16S DNA responses. CONCLUSION: When exercising at the same absolute workload, UT individuals are more susceptible to small intestinal epithelial injury and MT than HT individuals. These responses appear partially attributable to greater thermoregulatory, cardiovascular, and perceptual strain.


Assuntos
Aptidão Cardiorrespiratória , Microbioma Gastrointestinal , Transtornos de Estresse por Calor/fisiopatologia , Absorção Intestinal , Adulto , Bacteroides/isolamento & purificação , Bacteroides/patogenicidade , Ácidos Graxos/metabolismo , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Esforço Físico , Açúcares/metabolismo
8.
Bioorg Med Chem ; 28(14): 115564, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616186

RESUMO

6,6'-Aryl trehalose derivatives have been synthesized with a view towards identifying novel Th-17-inducing vaccine adjuvants based on the high affinity Mincle ligand Brartemicin. The initial structure-activity relationships of these novel trehalose-based compounds were investigated. All compounds have been evaluated for their ability to engage the Mincle receptor and induce a potential pro-Th17 cytokine profile from human peripheral blood mononuclear cells based on IL-6 production in human peripheral blood mononuclear cells. The preliminary biological characterization of the designed analogs presented in this paper should aid in the future design and testing of more affine ligands that may foster the discovery of novel adjuvants with improved pharmacological properties.


Assuntos
Lectinas Tipo C/metabolismo , Receptores Imunológicos/metabolismo , Trealose/farmacologia , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade , Trealose/análogos & derivados , Trealose/química
9.
Physiol Rep ; 8(5): e14374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32170836

RESUMO

PURPOSE: Exertional heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), negativly impacts health. Despite widespread application, the temporal reliability of popular GI barrier integity and MT biomarkers is poorly characterised. METHOD: Fourteen males completed two 80-min exertional heat stress tests (EHST) separated by 7-14 days. Venous blood was drawn pre, immediately- and 1-hr post both EHSTs. GI barrier integrity was assessed using the serum Dual-Sugar Absorption Test (DSAT), Intestinal Fatty-Acid-Binding Protein (I-FABP) and Claudin-3 (CLDN-3). MT was assessed using plasma Lipopolysaccharide Binding Protein (LBP), total 16S bacterial DNA and Bacteroides DNA. RESULTS: No GI barrier integrity or MT biomarker, except absolute Bacteroides DNA, displayed systematic trial order bias (p ≥ .05). I-FABP (trial 1 = Δ 0.834 ± 0.445 ng ml-1 ; trial 2 = Δ 0.776 ± 0.489 ng ml-1 ) and CLDN-3 (trial 1 = Δ 0.317 ± 0.586 ng ml-1 ; trial 2 = Δ 0.371 ± 0.508 ng ml-1 ) were increased post-EHST (p ≤ .01). All MT biomarkers were unchanged post-EHST. Coefficient of variation and typical error of measurement post-EHST were: 11.5% and 0.004 (ratio) for the DSAT 90-min postprobe ingestion; 12.2% and 0.004 (ratio) at 150-min postprobe ingestion; 12.1% and 0.376 ng ml-1 for I-FABP; 4.9% and 0.342 ng ml-1 for CLDN-3; 9.2% and 0.420 µg ml-1 for LBP; 9.5% and 0.15 pg µl-1 for total 16S DNA; and 54.7% and 0.032 for Bacteroides/total 16S DNA ratio. CONCLUSION: Each GI barrier integrity and MT translocation biomarker, except Bacteroides/total 16S ratio, had acceptable reliability at rest and postexertional heat stress.


Assuntos
Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Transtornos de Estresse por Calor/sangue , Resposta ao Choque Térmico/fisiologia , Adulto , Biomarcadores/sangue , Claudina-3/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Humanos , Lactulose/sangue , Masculino , Esforço Físico/fisiologia , Ramnose/sangue , Adulto Jovem
10.
Nutrients ; 12(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093001

RESUMO

Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.


Assuntos
Translocação Bacteriana/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiopatologia , Golpe de Calor/fisiopatologia , Terapia Nutricional/métodos , Suplementos Nutricionais , Trato Gastrointestinal/microbiologia , Golpe de Calor/microbiologia , Golpe de Calor/terapia , Humanos , Esforço Físico
11.
J Med Chem ; 63(1): 309-320, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31809053

RESUMO

Mycobacterium tuberculosis (Mtb) continues to be a major health threat worldwide, and the development of Mtb vaccines could play a pivotal role in the prevention and control of this devastating epidemic. Th17-mediated immunity has been implicated in disease protection correlates of immune protection against Mtb. Currently, there are no approved adjuvants capable of driving a Th17 response in a vaccine setting. Recent clinical trial results using trehalose dibehenate have demonstrated a formulation-dependant proof of concept adjuvant system CAF01 capable of inducing long-lived protection. We have discovered a new class of Th17-inducing vaccine adjuvants based on the natural product Brartemicin. We synthesized and evaluated the capacity of a library of aryl trehalose derivatives to drive immunostimulatory reresponses and evaluated the structure-activity relationships in terms of the ability to engage the Mincle receptor and induce production of innate cytokines from human and murine cells. We elaborated on the structure-activity relationship of the new scaffold and demonstrated the ability of the lead entity to induce a pro-Th17 cytokine profile from primary human peripheral blood mononuclear cells and demonstrated efficacy in generating antibodies in combination with tuberculosis antigen M72 in a mouse model.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Trealose/análogos & derivados , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Animais , Sítios de Ligação , Bovinos , Linhagem Celular , Feminino , Humanos , Lectinas Tipo C/agonistas , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo , Relação Estrutura-Atividade , Trealose/síntese química , Trealose/metabolismo , Trealose/uso terapêutico , Tuberculose/terapia , Vacinas contra a Tuberculose/uso terapêutico
12.
Front Immunol ; 10: 338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873180

RESUMO

Despite the ever present need for an effective Mycobacterium tuberculosis (Mtb) vaccine, efforts for development have been largely unsuccessful. Correlates of immune protection against Mtb are not wholly defined, but Th1 and likely Th17 adaptive immune responses have been demonstrated to be necessary for vaccine-mediated protection. Unfortunately, no approved adjuvants are able to drive a Th17 response, though recent clinical trials with CAF01 have demonstrated proof of concept. Herein we present the discovery and characterization of a new class of potential Th17-inducing vaccine adjuvants, alpha-branched trehalose diester molecules (αTDE). Based off the Mtb immunostimulatory component trehalose dimycolate (TDM), we synthesized and evaluated the immunostimulatory capacity of a library of structural derivatives. We evaluated the structure activity relationship of the compounds in relation to chain length and engagement of the Mincle receptor, production of innate cytokines from human and murine cells, and a pro-Th17 cytokine profile from primary human peripheral blood mononuclear cells. Murine cells displayed more structural tolerance, engaging and responding to a wide array of compound chain lengths. Interestingly, human cells displayed a unique specificity for ester chains between 5 and 14 carbons for maximal immune stimulating activity. Evaluation of two distinct αTDEs, B16 and B42, in concert with a recombinant Mtb antigen demonstrated their ability to augment a Th17 immune response against a Mtb antigen in vivo. Collectively this data describes the species-specific structural requirements for maximal human activity of alpha-branched trehalose diester compounds and demonstrates their capacity to serve as potent Th17-inducing adjuvants.


Assuntos
Fatores Corda/química , Fatores Corda/imunologia , Trealose/química , Trealose/imunologia , Adjuvantes Imunológicos , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Imunidade Celular , Lectinas Tipo C , Camundongos , Estrutura Molecular , Mycobacterium tuberculosis/imunologia , Relação Estrutura-Atividade , Células Th17/imunologia , Células Th17/metabolismo
13.
J Immunol ; 200(2): 788-799, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246954

RESUMO

Ligation of Dectin-1 by fungal glucans elicits a Th17 response that is necessary for clearing many fungal pathogens. Laminarin is a (1→3, 1→6)-ß-glucan that is widely reported to be a Dectin-1 antagonist, however, there are reports that laminarin is also a Dectin-1 agonist. To address this controversy, we assessed the physical properties, structure, purity, Dectin-1 binding, and biological activity of five different laminarin preparations from three different commercial sources. The proton nuclear magnetic resonance analysis indicated that all of the preparations contained laminarin although their molecular mass varied considerably (4400-34,400 Da). Two of the laminarins contained substantial quantities of very low m.w. compounds, some of which were not laminarin. These low m.w. moieties could be significantly reduced by extensive dialysis. All of the laminarin preparations were bound by recombinant human Dectin-1 and mouse Dectin-1, but the affinity varied considerably, and binding affinity did not correlate with Dectin-1 agonism, antagonism, or potency. In both human and mouse cells, two laminarins were Dectin-1 antagonists and two were Dectin-1 agonists. The remaining laminarin was a Dectin-1 antagonist, but when the low m.w. moieties were removed, it became an agonist. We were able to identify a laminarin that is a Dectin-1 agonist and a laminarin that is Dectin-1 antagonist, both of which are relatively pure preparations. These laminarins may be useful in elucidating the structure and activity relationships of glucan/Dectin-1 interactions. Our data demonstrate that laminarin can be either a Dectin-1 antagonist or agonist, depending on the physicochemical properties, purity, and structure of the laminarin preparation employed.


Assuntos
Produtos Biológicos/farmacologia , Glucanos/farmacologia , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Animais , Produtos Biológicos/química , Linhagem Celular , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Glucanos/química , Humanos , Fatores Imunológicos/química , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Polímeros/química , Polímeros/farmacologia , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
mBio ; 7(6)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899503

RESUMO

Brucella abortus, the bacterial agent of the worldwide zoonosis brucellosis, primarily infects host phagocytes, where it undergoes an intracellular cycle within a dedicated membrane-bound vacuole, the Brucella-containing vacuole (BCV). Initially of endosomal origin (eBCV), BCVs are remodeled into replication-permissive organelles (rBCV) derived from the host endoplasmic reticulum, a process that requires modulation of host secretory functions via delivery of effector proteins by the Brucella VirB type IV secretion system (T4SS). Following replication, rBCVs are converted into autophagic vacuoles (aBCVs) that facilitate bacterial egress and subsequent infections, arguing that the bacterium sequentially manipulates multiple cellular pathways to complete its cycle. The VirB T4SS is essential for rBCV biogenesis, as VirB-deficient mutants are stalled in eBCVs and cannot mediate rBCV biogenesis. This has precluded analysis of whether the VirB apparatus also drives subsequent stages of the Brucella intracellular cycle. To address this issue, we have generated a B. abortus strain in which VirB T4SS function is conditionally controlled via anhydrotetracycline (ATc)-dependent complementation of a deletion of the virB11 gene encoding the VirB11 ATPase. We show in murine bone marrow-derived macrophages (BMMs) that early VirB production is essential for optimal rBCV biogenesis and bacterial replication. Transient expression of virB11 prior to infection was sufficient to mediate normal rBCV biogenesis and bacterial replication but led to T4SS inactivation and decreased aBCV formation and bacterial release, indicating that these postreplication stages are also T4SS dependent. Hence, our findings support the hypothesis of additional, postreplication roles of type IV secretion in the Brucella intracellular cycle. IMPORTANCE: Many intracellular bacterial pathogens encode specialized secretion systems that deliver effector proteins into host cells to mediate the multiple stages of their intracellular cycles. Because these intracellular events occur sequentially, classical genetic approaches cannot address the late roles that these apparatuses play, as secretion-deficient mutants cannot proceed past their initial defect. Here we have designed a functionally controllable VirB type IV secretion system (T4SS) in the bacterial pathogen Brucella abortus to decipher its temporal requirements during the bacterium's intracellular cycle in macrophages. By controlling production of the VirB11 ATPase, which energizes the T4SS, we show not only that this apparatus is required early to generate the Brucella replicative organelle but also that it contributes to completion of the bacterium's cycle and bacterial egress. Our findings expand upon the pathogenic functions of the Brucella VirB T4SS and illustrate targeting of secretion ATPases as a useful strategy to manipulate the activity of bacterial secretion systems.


Assuntos
Adenosina Trifosfatases/metabolismo , Brucella abortus/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Adenosina Trifosfatases/genética , Animais , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Brucella abortus/genética , Células Cultivadas , Endossomos/metabolismo , Endossomos/microbiologia , Deleção de Genes , Teste de Complementação Genética , Camundongos , Biogênese de Organelas , Sistemas de Secreção Tipo IV/genética
15.
Cell Microbiol ; 16(6): 862-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286610

RESUMO

Autophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F. tularensis subsp. tularensis Schu S4 HimarFT transposon mutants in GFP-LC3-expressing murine macrophages by microscopy for clones localized within autophagic vacuoles after phagosomal escape. Eleven clones showed autophagic capture at 6 h post-infection, whose HimarFT insertions clustered to fourgenetic loci involved in lipopolysaccharidic and capsular O-antigen biosynthesis. Consistent with the HimarFT mutants, in-frame deletion mutants of two representative loci, FTT1236 and FTT1448c (manC), lacking both LPS and capsular O-antigen, underwent phagosomal escape but were cleared from the host cytosol. Unlike wild-type Francisella, the O-antigen deletion mutants were ubiquitinated, and recruited the autophagy adaptor p62/SQSTM1 and LC3 prior to cytosolic clearance. Autophagy-deficient macrophages partially supported replication of both mutants, indicating that O-antigen-lacking Francisella are controlled by autophagy. These data demonstrate the intracellular protective role of this bacterial surface polysaccharide against autophagy.


Assuntos
Autofagia , Francisella tularensis/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana , Antígenos O/imunologia , Antígenos O/metabolismo , Animais , Células Cultivadas , Citosol/microbiologia , Elementos de DNA Transponíveis , Francisella tularensis/fisiologia , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos C57BL , Mutagênese Insercional
16.
PLoS Pathog ; 9(8): e1003556, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950720

RESUMO

The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using ß-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Brucella abortus/metabolismo , Brucelose/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucelose/patologia , Feminino , Células HeLa , Humanos , Fígado/microbiologia , Fígado/patologia , Macrófagos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico/fisiologia , Vacúolos/genética , Vacúolos/metabolismo , Vacúolos/microbiologia
17.
Infect Immun ; 81(11): 4026-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959721

RESUMO

IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under the control of the Francisella rpsL promoter, thereby establishing that the loss of iglE, and not polar effects on downstream vgrG gene expression, was responsible for the defect. IglE is exported to the Francisella outer membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [(3)H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using the iglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication of Francisella tularensis in J774A.1 macrophages. Thus, IglE is essential for Francisella tularensis virulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present.


Assuntos
Francisella tularensis/patogenicidade , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Tularemia/patologia , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Francisella tularensis/química , Francisella tularensis/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Ilhas Genômicas , Lipoproteínas/química , Lipoproteínas/genética , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Peso Molecular , Tularemia/microbiologia , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética
18.
PLoS One ; 8(6): e67965, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840797

RESUMO

Francisella tularensis is a highly infectious bacterium whose virulence relies on its ability to rapidly reach the macrophage cytosol and extensively replicate in this compartment. We previously identified a novel Francisella virulence factor, DipA (FTT0369c), which is required for intramacrophage proliferation and survival, and virulence in mice. DipA is a 353 amino acid protein with a Sec-dependent signal peptide, four Sel1-like repeats (SLR), and a C-terminal coiled-coil (CC) domain. Here, we determined through biochemical and localization studies that DipA is a membrane-associated protein exposed on the surface of the prototypical F. tularensis subsp. tularensis strain SchuS4 during macrophage infection. Deletion and substitution mutagenesis showed that the CC domain, but not the SLR motifs, of DipA is required for surface exposure on SchuS4. Complementation of the dipA mutant with either DipA CC or SLR domain mutants did not restore intracellular growth of Francisella, indicating that proper localization and the SLR domains are required for DipA function. Co-immunoprecipitation studies revealed interactions with the Francisella outer membrane protein FopA, suggesting that DipA is part of a membrane-associated complex. Altogether, our findings indicate that DipA is positioned at the host-pathogen interface to influence the intracellular fate of this pathogen.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Francisella tularensis/crescimento & desenvolvimento , Macrófagos/microbiologia , Tularemia/microbiologia , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Tularemia/metabolismo , Tularemia/patologia , Fatores de Virulência/genética
19.
mBio ; 4(1): e00418-12, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23422410

RESUMO

Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces proinflammatory responses. Ectopically expressed VceC interacted with the endoplasmic reticulum (ER) chaperone BiP/Grp78 and localized to the ER of HeLa cells. ER localization of VceC required a transmembrane domain in its N terminus. Notably, the expression of VceC resulted in reorganization of ER structures. In macrophages, VceC was required for B. abortus-induced inflammation by induction of the unfolded protein response by a process requiring inositol-requiring transmembrane kinase/endonuclease 1. Altogether, these findings suggest that translocation of the T4SS effector VceC induces ER stress, which results in the induction of proinflammatory host cell responses during B. abortus infection. IMPORTANCE Brucella species are pathogens that require a type IV secretion system (T4SS) to survive in host cells and to maintain chronic infection. By as-yet-unknown pathways, the T4SS also elicits inflammatory responses in infected cells. Here we show that inflammation caused by the T4SS results in part from the sensing of a T4SS substrate, VceC, that localizes to the endoplasmic reticulum (ER), an intracellular site of Brucella replication. Possibly via binding of the ER chaperone BiP, VceC causes ER stress with concomitant expression of proinflammatory cytokines. Thus, induction of the unfolded protein response may represent a novel pathway by which host cells can detect pathogens deploying a T4SS.


Assuntos
Sistemas de Secreção Bacterianos , Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Resposta a Proteínas não Dobradas , Fatores de Virulência/metabolismo , Animais , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático , Feminino , Células HeLa , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Virulência/toxicidade
20.
Autophagy ; 8(9): 1342-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863802

RESUMO

Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ∆dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival and proliferation.


Assuntos
Autofagia , Citosol/microbiologia , Replicação do DNA , Francisella tularensis/fisiologia , Mutação/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Endocitose , Endossomos/microbiologia , Endossomos/ultraestrutura , Francisella tularensis/ultraestrutura , Proteínas de Choque Térmico/metabolismo , Humanos , Espaço Intracelular/microbiologia , Macrófagos/microbiologia , Macrófagos/patologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Fagossomos/microbiologia , Fagossomos/ultraestrutura , Proteína Sequestossoma-1 , Ubiquitina/metabolismo , Vacúolos/microbiologia , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...