Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 235: 202-212, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682673

RESUMO

Hydrochloric acid recovery from pickling solutions was studied by employing a batch diffusion dialysis (DD) laboratory test-rig equipped with Fumasep membranes. The effect of main operating parameters such as HCl concentration (0.1-3 M) and the presence of Fe2+ (up to 150 g/l) was investigated to simulate the system operation with real industrial streams. The variation of HCl, Fe2+ and water flux was identified. When only HCl is present, a recovery efficiency of 100% was reached. In the presence of FeCl2, higher acid recovery efficiencies, up to 150%, were observed due to the so-called "salt effect", which promotes the passage of acid even against its concentration gradient. A 7% leakage of FeCl2 was detected in the most severe conditions. An original analysis on water flux in DD operation has indicated that osmotic flux prevails at low HCl concentrations, while a dominant "drag flux" in the opposite direction is observed for higher HCl concentrations. A comprehensive mathematical model was developed and validated with experimental data. The model has a time and space distributed-parameters structure allowing to effectively simulate steady-state and transient batch operations, thus providing an operative tool for the design and optimisation of DD units.


Assuntos
Ácido Clorídrico , Diálise Renal , Ácidos , Difusão , Osmose
2.
Science ; 274(5295): 2049-52, 1996 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-8953029

RESUMO

Interfacially active block copolymer amphiphiles have been synthesized and their self-assembly into micelles in supercritical carbon dioxide (CO2) has been demonstrated with small-angle neutron scattering (SANS). These materials establish the design criteria for molecularly engineered surfactants that can stabilize and disperse otherwise insoluble matter into a CO2 continuous phase. Polystyrene-b-poly(1,1-dihydroperfluorooctyl acrylate) copolymers self-assembled into polydisperse core-shell-type micelles as a result of the disparate solubility characteristics of the different block segments in CO2. These nonionic surfactants for CO2 were shown by SANS to be capable of emulsifying up to 20 percent by weight of a CO2-insoluble hydrocarbon into CO2. This result demonstrates the efficacy of surfactant-modified CO2 in reducing the large volumes of organic and halogenated solvent waste streams released into our environment by solvent-intensive manufacturing and process industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...