Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172566

RESUMO

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Complexos Multiproteicos , Humanos , Endossomos/metabolismo , Transporte Proteico , Proteínas/metabolismo , Complexos Multiproteicos/metabolismo
2.
Structure ; 30(12): 1590-1602.e6, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302387

RESUMO

The sorting nexin SNX17 controls endosomal recycling of transmembrane cargo proteins including integrins, the amyloid precursor protein, and lipoprotein receptors. This requires association with the Commander trafficking complex and depends on the C terminus of SNX17 through unknown mechanisms. Using proteomics, we find that the SNX17 C terminus is sufficient for Commander interaction and also associates with members of the PDZ and LIM domain (PDLIM) family. SNX17 contains a type III PDZ binding motif that binds specifically to the PDLIM proteins. The structure of the PDLIM7 PDZ domain bound to the SNX17 C terminus reveals an unconventional perpendicular peptide interaction mediated by electrostatic contacts and a uniquely conserved proline-containing loop sequence in the PDLIM protein family. Our results define the mechanism of SNX17-PDLIM interaction and suggest that the PDLIM proteins may play a role in regulating the activity of SNX17 in conjunction with Commander and actin-rich endosomal trafficking domains.


Assuntos
Proteômica , Nexinas de Classificação , Nexinas de Classificação/química , Ligação Proteica , Sequência de Aminoácidos , Endossomos/metabolismo
3.
Elife ; 72018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067224

RESUMO

The COMMD proteins are a conserved family of proteins with central roles in intracellular membrane trafficking and transcription. They form oligomeric complexes with each other and act as components of a larger assembly called the CCC complex, which is localized to endosomal compartments and mediates the transport of several transmembrane cargos. How these complexes are formed however is completely unknown. Here, we have systematically characterised the interactions between human COMMD proteins, and determined structures of COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an α-helical N-terminal domain, and a highly conserved C-terminal domain that forms a tightly interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains also bind directly to components of CCC and mediate non-specific membrane association. Overall these studies show that COMMD proteins function as obligatory dimers with conserved domain architectures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/uso terapêutico , Complexos Multiproteicos/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Endossomos/química , Endossomos/genética , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Transdução de Sinais/genética , Transcrição Gênica
4.
J Med Chem ; 60(12): 4923-4931, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28537726

RESUMO

Evaluating the ligandability of a protein target is a key component when defining hit-finding strategies or when prioritize among drug targets. Computational as well as biophysical approaches based on nuclear magnetic resonance (NMR) fragment screening are powerful approaches but suffer from specific constraints that limit their usage. Here, we demonstrate the applicability of high-throughput thermal scanning (HTTS) as a simple and generic biophysical fragment screening method to reproduce assessments from NMR-based screening. By applying this method to a large set of proteins we can furthermore show that the assessment is predictive of the success of high-throughput screening (HTS). The few divergences for targets of low ligandability originate from the sensitivity differences of the orthogonal biophysical methods. We thus applied a new strategy making use of modulations in the solvent structure to improve assay sensitivity. This novel approach enables improved ligandability assessments in accordance with NMR-based assessments and more importantly positions the methodology as a valuable option for biophysical fragment screening.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Proteínas/química , Proteínas/metabolismo , Sensibilidade e Especificidade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...