Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39299703

RESUMO

Ni-based electrocatalysts have been predicted as highly potential candidates for hydrogen evolution reaction (HER); however, their applicability is hindered by an unfavorable d-band energy level (Ed). Moreover, precise d-band structural engineering of Ni-based materials is deterred by appropriative synthesis methods and experimental characterization. Herein, we meticulously synthesize a special single-iodine-atom structure (I-Ni@C) and characterize the Ed manipulation via resonant inelastic X-ray scattering (RIXS) spectroscopy to fill this gap. The complex catalytic mechanism has been elucidated via synchrotron radiation-based multitechniques (SRMS) including X-ray absorption fine structure (XAFS), in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy, and near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). In particular, RIXS is innovatively applied to reveal the precise regulation of Ni Ed of I-Ni@C. Consequently, the role of such single-iodine-atom strategy is confirmed to not only facilitate the moderate Ed of the Ni site for balancing the adsorption/desorption capacities of key intermediates but also act as a bridge to enhance the electronic interaction between Ni and the carbon shell for forming a localized polarized electric field conducive to H2O dissociation. As a result, I-Ni@C exhibits an enhanced alkaline hydrogen evolution performance with an overpotential of 78 mV at 10 mA/cm2 and superior stability, surpassing the majority of the reported Ni-based catalysts. Overall, this study has managed to successfully tailor the d-band center of materials from the SRMS perspective, which has crucial implications for nanotechnology, chemistry, catalysis, and other fields.

2.
Small ; : e2400673, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700057

RESUMO

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

3.
Small ; 20(32): e2400099, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38507728

RESUMO

Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.

4.
Small Methods ; 8(7): e2301115, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38145365

RESUMO

Aqueous zinc ion batteries (AZIBs) show great potential in large-scale energy storage systems. However, the inferior cycling life due to water-induced parasitic reactions and uncontrollable dendrites growth impede their application. Electrolyte optimization via the use of additives is a promising strategy to enhance the stability of AZIBs. Nevertheless, the mechanism of optimal multifunctional additive strategy requires further exploration. Herein, sodium dodecyl benzene sulfonate (SDBS) is proposed as a dual-functional additive in ZnSO4 electrolyte. Benefiting from the additive, both side reactions and zinc dendrites growth are significantly inhibited. Further, a synchrotron radiational spectroscopic study is employed to investigate SDB- adjusted electric double layer (EDL) near the Zn surface and the optimized solvation sheath of Zn2+. First-principles calculations verify the firm adsorption of SDB-, and restriction of random diffusion of Zn2+ on the Zn surface. In particular, the SDBS additive endows Zn||Zn symmetric cells with a 1035 h ultra-stable plating/stripping at 0.2 mA cm-2. This work not only provides a promising design strategy by dual-functional electrolyte additives for high stable AZIBs, but also exhibits the prospect of synchrotron radiation spectroscopy analysis on surface EDL and Zn2+ solvation shell optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA