Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 173(7): 1609-1621.e15, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754821

RESUMO

Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.


Assuntos
Retroalimentação Fisiológica , HIV-1/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , HIV-1/genética , Humanos , Células Jurkat , Modelos Biológicos , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Imagem com Lapso de Tempo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
2.
ACS Synth Biol ; 6(2): 334-343, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27690390

RESUMO

Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.


Assuntos
Escherichia coli/genética , Expressão Gênica , Modelos Genéticos , Sistema Livre de Células , Proteínas de Fluorescência Verde/genética , Processamento de Imagem Assistida por Computador , Microfluídica/instrumentação , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA