Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4435, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627690

RESUMO

Aberrant miRNA expression has been associated with many diseases, and extracellular miRNAs that circulate in the bloodstream are remarkably stable. Recently, there has been growing interest in identifying cell-free circulating miRNAs that can serve as non-invasive biomarkers for early detection of disease or selection of treatment options. However, quantifying miRNA levels in biofluids is technically challenging due to their low abundance. Using reference samples, we performed a cross-platform evaluation in which miRNA profiling was performed on four different qPCR platforms (MiRXES, Qiagen, Applied Biosystems, Exiqon), nCounter technology (NanoString), and miRNA-Seq. Overall, our results suggest that using miRNA-Seq for discovery and targeted qPCR for validation is a rational strategy for miRNA biomarker development in clinical samples that involve limited amounts of biofluids.


Assuntos
Biomarcadores/metabolismo , Líquidos Corporais/metabolismo , MicroRNA Circulante/genética , Nanotecnologia/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Técnicas Genéticas , Células HEK293 , Humanos , Células THP-1
2.
Front Immunol ; 11: 580968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013934

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4+ T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression. Immunodeficient mice engrafted with human immune cells (HIL mice) were fed with high fat and high calorie (HFHC) or chow diet for 20 weeks. Liver histology and immune profile of HIL mice were analyzed and compared with patient data. HIL mice on HFHC diet developed steatosis, inflammation and fibrosis of the liver. Human CD4+ central and effector memory T cells increased within the liver and in the peripheral blood of our HIL mice, accompanied by marked up-regulation of pro-inflammatory cytokines (IL-17A and IFNγ). In vivo depletion of human CD4+ T cells in HIL mice reduced liver inflammation and fibrosis, but not steatosis. Our results highlight CD4+ memory T cell subsets as important drivers of NAFLD progression from steatosis to fibrosis and provides a humanized mouse model for pre-clinical evaluation of potential therapeutics.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Cirrose Hepática Experimental/etiologia , Cirrose Hepática Experimental/imunologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Feminino , Células-Tronco Fetais/transplante , Hepatócitos/transplante , Xenoenxertos , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Cirrose Hepática Experimental/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Hepatopatia Gordurosa não Alcoólica/patologia
3.
NMR Biomed ; 33(4): e4248, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977123

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is typically associated with early metabolic remodeling. Noninvasive imaging biomarkers that reflect these changes will be crucial in determining responses to early drug interventions in these patients. Mean intracellular water lifetime (τi ) has been shown to be partially inversely related to Na, K-ATPase transporter activity and may thus provide insight into the metabolic status in HFpEF patients. Here, we aim to perform regional quantification of τi using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in the nonhuman primate (NHP) heart and evaluate its region-specific variations under conditions of myocardial stress in the context of perturbed myocardial function. Cardiac stress was induced in seven naïve cynomolgus macaques using a dobutamine stepwise infusion protocol. All animals underwent 3 T cardiac dual-bolus DCE and tagging MRI experiments. The shutter-speed model was employed to quantify regional τi from the DCE-MR images. Additionally, τi values were correlated with myocardial strains. During cardiac stress, there was a significant decrease in global τi (192.9 ± 76.3 ms vs 321.6 ± 70 ms at rest, P < 0.05) in the left ventricle, together with an increase in global peak circumferential strain (-15.4% ± 2.7% vs -10.1% ± 2.9% at rest, P < 0.05). Specifically, slice-level analysis further revealed that a greater significant decrease in mean τi was observed in the apical region (ΔτI = 182.4 ms) compared with the basal (Δτi = 113.2 ms) and midventricular regions (Δτi = 108.4 ms). Regional analysis revealed that there was a greater significant decrease in mean τi in the anterior (Δτi = 243.9 ms) and antero-lateral (Δτi = 177.2 ms) regions. In the inferior and infero-septal regions, although a decrease in τi was observed, it was not significant. Whole heart regional quantification of τi is feasible using DCE-MRI. τi is sensitive to regional changes in metabolic state during cardiac stress, and its value correlates with strain.


Assuntos
Miocárdio/patologia , Estresse Fisiológico , Água/química , Animais , Biomarcadores/metabolismo , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo
4.
J Biomech ; 90: 50-57, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31053473

RESUMO

MRI-based computational fluid dynamics simulations were performed in the left ventricles of two adult porcine subjects with varying physiological states (before and after an induced infarction). The hypothesis that diastolic vortices store kinetic energy and assist systolic ejection was tested, by performing systolic simulations in the presence and absence of diastolic vortices. The latter was achieved by reinitializing the entire velocity field to be zero at the beginning of systole. A rudimentary prescribed motion model of a mitral valve was included in the simulations to direct the incoming mitral jet towards the apex. Results showed that the presence or absence of diastolic vortex rings had insignificant impact on the energy expended by walls of the left ventricles for systolic ejection for both the porcine subjects, under all physiological conditions. Although substantial kinetic energy was stored in diastolic vortices by end diastole, it provided no appreciable savings during systolic ejection, and most likely continued to complete dissipation during systole. The role of diastolic vortices in apical washout was investigated by studying the cumulative mass fraction of passive dye that was ejected during systole in the presence and absence of vortices. Results indicated that the diastolic vortices play a crucial role in ensuring efficient washout of apical blood during systolic ejection.


Assuntos
Diástole/fisiologia , Hidrodinâmica , Sístole/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Feminino , Cinética , Imageamento por Ressonância Magnética , Masculino , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiologia , Suínos , Função Ventricular Esquerda/fisiologia
5.
Future Sci OA ; 3(4): FSO244, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29134128

RESUMO

AIM: Expression of PD-L1 in the tumor is associated with more favorable responses to anti-PD-1 therapy in multiple cancers. However, obtaining tumor biopsies for PD-L1 interrogation is an invasive procedure and challenging to assess repeatedly as the disease progresses. MATERIALS & METHODS: Here we assess an alternative, minimally invasive approach to analyze blood samples for circulating tumor cells (CTCs) that have broken away from the tumor and entered the periphery. Our approach uses sized-based microfluidic CTC enrichment and subsequent characterization with microfluidic-based cytometry (chipcytometry). CONCLUSION: We demonstrate tumor-cell detection and characterization for PD-L1, and other markers, in both spiked and patient samples. This preliminary communication is the first report using chipcytometry for the characterization of CTCs.

6.
Biomech Model Mechanobiol ; 16(5): 1503-1517, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28364199

RESUMO

Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.


Assuntos
Metabolismo Energético , Ventrículos do Coração/fisiopatologia , Hidrodinâmica , Infarto do Miocárdio/fisiopatologia , Animais , Simulação por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Volume Sistólico , Sus scrofa
7.
J Magn Reson Imaging ; 45(2): 556-569, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27384520

RESUMO

PURPOSE: To identify reproducible and reliable noninvasive regional imaging biomarkers of cardiac function and perfusion at rest and under stress in healthy nonhuman primates (NHPs) that may be used in the future for the early characterization of preclinical heart failure models, to evaluate therapy, and for clinical translation. MATERIALS AND METHODS: Seven naive cynomolgus macaques underwent test-retest 3T cardiac MRI tagging and dual-bolus perfusion experiments. Regional cardiac function biomarkers, such as peak circumferential strain (CS), average diastolic strain-rate (DSR), contractile reserve (CR), diastolic reserve, peak torsion, and torsion reserve were quantified. Further, regional myocardial blood flow (MBF), myocardial perfusion reserve (MPR), and myocardial perfusion reserve-to-contractile reserve (MPR/CR) were also derived. Inter- and intraobserver reproducibility and test-retest reliability analyses were conducted using the reliability and generalizability coefficients including correlation coefficient (CC) and intraclass correlation coefficient (ICC). RESULTS: Overall, peak CS, DSR, and MBF are robust biomarkers at both rest and stress with moderate-good inter- and intraobserver reproducibility and test-retest reliability. At rest: intra-/interobserver reproducibility (CC): peak CS (0.81/0.81), DSR (0.81/0.81), MBF (0.72/0.57), peak torsion (0.79/0.79); test-retest reliability: (CC/ICC): peak CS (0.62/0.75), DSR (0.24/0.55), MBF (0.66/0.62), and peak torsion (0.79/0.78). Under stress: intra-/interobserver reproducibility (CC): peak CS (0.61/0.60), DSR (0.50/0.50), MBF (0.63/0.61), MPR (0.43/0.43), and peak torsion (0.38/0.38); test-retest reliability: (CC/ICC): peak CS (0.58/0.58), DSR (0.24/0.43), MBF (0.58/0.58), MPR (0.43/0.38), and peak torsion (0.38/0.38). CONCLUSION: We demonstrated the feasibility of using cardiac MRI to characterize left ventricular functional and perfusion responses to stress in an NHP species, and specific robust biomarkers such as peak CS, DSR, MBF, diastolic reserve, and MPR have been identified for clinical translation and drug research. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:556-569.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Coronária/fisiologia , Dobutamina , Teste de Esforço/métodos , Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Função Ventricular Esquerda/fisiologia , Animais , Biomarcadores , Humanos , Macaca fascicularis , Angiografia por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
PLoS One ; 11(6): e0156805, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27309348

RESUMO

BACKGROUND: Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. METHODOLOGY: Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). PRINCIPAL FINDINGS: Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. CONCLUSIONS: These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics.


Assuntos
Capsaicina/efeitos adversos , Cerebelo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Hiperalgesia/diagnóstico por imagem , Dor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiopatologia , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiopatologia , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Injeções Subcutâneas , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Dor/induzido quimicamente , Dor/fisiopatologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Cauda , Sensação Térmica/fisiologia
9.
PLoS One ; 10(5): e0127947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010607

RESUMO

Pre-clinical animal models are important to study the fundamental biological and functional mechanisms involved in the longitudinal evolution of heart failure (HF). Particularly, large animal models, like nonhuman primates (NHPs), that possess greater physiological, biochemical, and phylogenetic similarity to humans are gaining interest. To assess the translatability of these models into human diseases, imaging biomarkers play a significant role in non-invasive phenotyping, prediction of downstream remodeling, and evaluation of novel experimental therapeutics. This paper sheds insight into NHP cardiac function through the quantification of magnetic resonance (MR) imaging biomarkers that comprehensively characterize the spatiotemporal dynamics of left ventricular (LV) systolic pumping and LV diastolic relaxation. MR tagging and phase contrast (PC) imaging were used to quantify NHP cardiac strain and flow. Temporal inter-relationships between rotational mechanics, myocardial strain and LV chamber flow are presented, and functional biomarkers are evaluated through test-retest repeatability and inter subject variability analyses. The temporal trends observed in strain and flow was similar to published data in humans. Our results indicate a dominant dimension based pumping during early systole, followed by a torsion dominant pumping action during late systole. Early diastole is characterized by close to 65% of untwist, the remainder of which likely contributes to efficient filling during atrial kick. Our data reveal that moderate to good intra-subject repeatability was observed for peak strain, strain-rates, E/circumferential strain-rate (CSR) ratio, E/longitudinal strain-rate (LSR) ratio, and deceleration time. The inter-subject variability was high for strain dyssynchrony, diastolic strain-rates, peak torsion and peak untwist rate. We have successfully characterized cardiac function in NHPs using MR imaging. Peak strain, average systolic strain-rate, diastolic E/CSR and E/LSR ratios, and deceleration time were identified as robust biomarkers that could potentially be applied to future pre-clinical drug studies.


Assuntos
Biomarcadores , Macaca fascicularis/fisiologia , Imageamento por Ressonância Magnética , Modelos Animais , Função Ventricular Esquerda/fisiologia , Animais , Diástole , Feminino , Reprodutibilidade dos Testes , Sístole
10.
PLoS One ; 9(10): e110432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337714

RESUMO

BACKGROUND: Pharmacological MRI (phMRI) is a neuroimaging technique where drug-induced hemodynamic responses can represent a pharmacodynamic biomarker to delineate underlying biological consequences of drug actions. In most preclinical studies, animals are anesthetized during image acquisition to minimize movement. However, it has been demonstrated anesthesia could attenuate basal neuronal activity, which can confound interpretation of drug-induced brain activation patterns. Significant efforts have been made to establish awake imaging in rodents and nonhuman primates (NHP). Whilst various platforms have been developed for imaging awake NHP, comparison and validation of phMRI data as translational biomarkers across species remain to be explored. METHODOLOGY: We have established an awake NHP imaging model that encompasses comprehensive acclimation procedures with a dedicated animal restrainer. Using a cerebral blood volume (CBV)-based phMRI approach, we have determined differential responses of brain activation elicited by the systemic administration of buprenorphine (0.03 mg/kg i.v.), a partial µ-opioid receptor agonist, in the same animal under awake and anesthetized conditions. Additionally, region-of-interest analyses were performed to determine regional drug-induced CBV time-course data and corresponding area-under-curve (AUC) values from brain areas with high density of µ-opioid receptors. PRINCIPAL FINDINGS: In awake NHPs, group-level analyses revealed buprenorphine significantly activated brain regions including, thalamus, striatum, frontal and cingulate cortices (paired t-test, versus saline vehicle, p<0.05, n = 4). This observation is strikingly consistent with µ-opioid receptor distribution depicted by [6-O-[(11)C]methyl]buprenorphine ([(11)C]BPN) positron emission tomography imaging study in baboons. Furthermore, our findings are consistent with previous buprenorphine phMRI studies in humans and conscious rats which collectively demonstrate the cross-species translatability of awake imaging. Conversely, no significant change in activated brain regions was found in the same animals imaged under the anesthetized condition. CONCLUSIONS: Our data highlight the utility and importance of awake NHP imaging as a translational imaging biomarker for drug research.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Corpo Estriado/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Anestesia Geral , Animais , Corpo Estriado/fisiologia , Feminino , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Macaca fascicularis/fisiologia , Imageamento por Ressonância Magnética/métodos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Tálamo/fisiologia , Pesquisa Translacional Biomédica , Vigília/fisiologia
11.
J Pharmacol Exp Ther ; 341(1): 263-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267203

RESUMO

In vivo translational imaging techniques, such as positron emission tomography and single-photon emission-computed tomography, are the only ways to adequately determine that a drug engages its target. Unfortunately, there are far more experimental mechanisms being tested in the clinic than there are radioligands, impeding the use of this risk-mitigating approach in modern drug discovery and development. Pharmacological magnetic resonance imaging (phMRI) offers an approach for developing new biomarkers with the potential to determine central activity and dose selection in animals and humans. Using phMRI, we characterized the effects of xanomeline on ketamine-induced activation on blood oxygen level-dependent (BOLD) signal. In the present studies, xanomeline alone dose-dependently increased the BOLD signal across several regions of interest, including association and motor and sensory cortical regions. It is noteworthy that xanomeline dose-dependently attenuated ketamine-induced brain activation patterns, effects that were antagonized by atropine. In conclusion, the muscarinic 1/4-preferring receptor agonist xanomeline suppressed the effects of the N-methyl-D-aspartate channel blocker ketamine in a number of brain regions, including the association cortex, motor cortex, and primary sensory cortices. The region-specific brain activation observed in this ketamine challenge phMRI study may provide a method of confirming central activity and dose selection for novel antipsychotic drugs in early clinical trials for schizophrenia, if the data obtained in animals can be recapitulated in humans.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Piridinas/metabolismo , Piridinas/farmacologia , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Simulação de Dinâmica Molecular , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Vigília/efeitos dos fármacos , Vigília/fisiologia
12.
PLoS One ; 6(11): e27839, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125628

RESUMO

During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess 'DMN-like' functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = -0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vigília/fisiologia , Animais , Ansiedade/fisiopatologia , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/fisiologia , Hipotálamo/anatomia & histologia , Hipotálamo/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Long-Evans , Taxa Respiratória/fisiologia
13.
Biochem Pharmacol ; 82(8): 967-76, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21620806

RESUMO

Positive modulation of the neuronal nicotinic acetylcholine receptor (nAChR) α4ß2 subtype by selective positive allosteric modulator NS-9283 has shown to potentiate the nAChR agonist ABT-594-induced anti-allodynic activity in preclinical neuropathic pain. To determine whether this benefit can be extended beyond neuropathic pain, the present study examined the analgesic activity and adverse effect profile of co-administered NS-9283 and ABT-594 in a variety of preclinical models in rats. The effect of the combined therapy on drug-induced brain activities was also determined using pharmacological magnetic resonance imaging. In carrageenan-induced thermal hyperalgesia, co-administration of NS-9283 (3.5 µmol/kg, i.p.) induced a 6-fold leftward shift of the dose-response of ABT-594 (ED(50)=26 vs. 160 nmol/kg, i.p.). In the paw skin incision model of post-operative pain, co-administration of NS-9283 similarly induced a 6-fold leftward shift of ABT-594 (ED(50)=26 vs. 153 nmol/kg). In monoiodo-acetate induced knee joint pain, co-administration of NS-9283 enhanced the potency of ABT-594 by 5-fold (ED(50)=1.0 vs. 4.6 nmol/kg). In pharmacological MRI, co-administration of NS-9283 was shown to lead to a leftward shift of ABT-594 dose-response for cortical activation. ABT-594 induced CNS-related adverse effects were not exacerbated in presence of an efficacious dose of NS-9283 (3.5 µmol/kg). Acute challenge of NS-9283 produced no cross sensitization in nicotine-conditioned animals. These results demonstrate that selective positive allosteric modulation at the α4ß2 nAChR potentiates nAChR agonist-induced analgesic activity across neuropathic and nociceptive preclinical pain models without potentiating ABT-594-mediated adverse effects, suggesting that selective positive modulation of α4ß2 nAChR by PAM may represent a novel analgesic approach.


Assuntos
Analgésicos/uso terapêutico , Azetidinas/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Oxidiazóis/uso terapêutico , Dor/tratamento farmacológico , Piridinas/uso terapêutico , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Azetidinas/administração & dosagem , Azetidinas/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Imageamento por Ressonância Magnética , Masculino , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/efeitos adversos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/efeitos adversos , Dor/metabolismo , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Ratos , Ratos Sprague-Dawley
14.
Biochem Pharmacol ; 81(12): 1374-87, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21219879

RESUMO

During the last two decades, functional neuroimaging technology, especially functional magnetic resonance imaging (fMRI), has improved tremendously, with new attention towards resting-state functional connectivity of the brain. This development has allowed scientists to study changes in brain structure and function, and probe these two properties under conditions of evoked stimulation, disease and drug administration. In the domain of functional imaging, the identification and characterization of central nervous system (CNS) functional networks have emerged as potential biomarkers for CNS disorders in humans. Recent attempts to translate clinical neuroimaging methodology to preclinical studies have also been carried out, which offer new opportunities in translational neuroscience research. In this paper, we review recent developments in structural and functional MRI and their use to probe functional connectivity in various CNS disorders such as schizophrenia, mood disorders, Alzheimer's disease (AD) and pain.


Assuntos
Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/patologia , Sistema Nervoso Central/patologia , Imageamento por Ressonância Magnética , Pesquisa Translacional Biomédica/métodos , Animais , Encéfalo/patologia , Encéfalo/fisiologia , Humanos
15.
Synapse ; 65(5): 393-403, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20803618

RESUMO

Schizophrenia is a highly familial, neurodevelopmental disorder that is associated with several neuropsychiatric, psychological, and neuropathological features. Although pharmacological animal models of dopaminergic and glutamatergic dysfunction have helped advance our understanding of the disease biology, there is a clear need for translational models that capture the neuropathological and functional manifestations associated with the intermediate phenotype and the clinical illness. Neuroimaging of preclinical neurodevelopmental approaches such as methylazoxymethanol acetate (MAM) exposure may afford a powerful translational tool to establish endpoints with greater congruency across animals and humans. Using in vivo volumetric magnetic resonance imaging (MRI), manganese-enhanced MRI, and diffusion tensor imaging (DTI), we investigated morphological and cytoarchitectural changes of brain structures in MAM-exposed rats, a neurodevelopmental model of schizophrenia. Compared to saline-exposed controls, MAM-exposed rats showed significant enlargement of lateral and third ventricles as well as reduced hippocampal volumes, which is consistent with findings observed in schizophrenia. In addition, DTI revealed that diffusion fractional anisotropy retrieved from corpus callosum and cingulum were significantly decreased in MAM-exposed rats, suggesting that demyelination occurred in these white-matter fiber tracts. Imaging findings were confirmed by conducting histological analysis using hematoxylin and eosin and Luxol fast blue stainings. In summary, structural abnormalities resulting from a MAM environmental challenge parallel cerebral pathology observed in schizophrenia. The MAM model incorporating noninvasive imaging techniques may therefore serve as an improved translational research tool for assessing new treatments for schizophrenia.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Acetato de Metilazoximetanol/toxicidade , Neurotoxinas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores Etários , Animais , Animais Recém-Nascidos , Mapeamento Encefálico , Córtex Cerebral/crescimento & desenvolvimento , Ventrículos Cerebrais/crescimento & desenvolvimento , Ventrículos Cerebrais/patologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
16.
J Pharmacol Exp Ther ; 336(3): 716-23, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21172907

RESUMO

Neuronal acetylcholine nicotinic receptors (nAChRs) are targets for the development of novel treatments of brain diseases. However, adverse effects (for example, emesis or nausea) associated with high drug maximal exposures or C(max) at nAChRs often hinder the advancement of experimental compounds in clinical trials. Therefore, it is essential to explore the feasibility of maintaining exposures below a predetermined C(max) while sustaining targeted CNS effects. By use of a [¹²³I]5-IA [5-[¹²³I]iodo-3-[2(S)-azetidinylmethoxy]pyridine] displacement SPECT imaging paradigm in nonhuman primates, we compared brain nAChR binding activity elicited by either a bolus injection or by slow infusion of an identical dose of a novel neuronal nicotinic agonist, ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride], where the slow infusion scheme was derived from a two-compartment pharmacokinetic modeling designed to limit the C(max). We determined [¹²³I]5-IA displacement using doses of ABT-089 (0.04, 0.4, and 1.0 mg/kg i.v.) that encompassed efficacious drug exposures in nonhuman primates and examined the relationship between ABT-089 displacement ratios and plasma exposures. Our results indicated that calculated displacement ratios were quite similar between the two different dosing regimens despite substantial differences in C(max). In addition, displacement ratios correlated well with drug exposures calculated as the area-under-curve (AUC) of plasma concentration and varied in a dose-dependent manner, suggesting that displacement ratios are driven by the AUC of drug plasma exposure but not C(max). Our data demonstrate the feasibility of predicting plasma exposures using a two-compartment pharmacokinetic model and its potential for optimizing dosing regimens.


Assuntos
Azetidinas/farmacocinética , Encéfalo/diagnóstico por imagem , Modelos Biológicos , Piridinas/administração & dosagem , Piridinas/farmacocinética , Pirrolidinas/administração & dosagem , Pirrolidinas/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Papio , Papio anubis
17.
J Pharmacol Exp Ther ; 336(3): 709-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21172908

RESUMO

Neuroimaging techniques have been exploited to characterize the effect of N-methyl-d-aspartate (NMDA) receptor antagonists on brain activation in humans and animals. However, most preclinical imaging studies were conducted in anesthetized animals and could be confounded by potential drug-anesthetic interactions as well as anesthetic agents' effect on brain activation, which may affect the translation of these basic research findings to the clinical setting. The main aim of the current study was to examine the brain activation elicited by the infusion of a subanesthetic dose of ketamine using blood oxygenation level dependence (BOLD) pharmacological magnetic resonance imaging (phMRI) in awake rats. However, a secondary aim was to determine whether a behaviorally active metabotropic glutamate 2/3 receptor agonist, (1S,2R,5R,6R)-2-amino-4-oxabicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), could modulate the effects of ketamine-induced brain activation. Our data indicate that ketamine produces positive BOLD signals in several cortical and hippocampal regions, whereas negative BOLD signals were observed in regions, such as periaqueductal gray (PAG) (p < 0.05). Furthermore, pretreatment of LY379268 significantly attenuated ketamine-induced brain activation in a region-specific manner (posterior cingulate, entorhinal, and retrosplenial cortices, hippocampus CA1, and PAG). The [corrected] region-specific brain activations observed in this ketamine phMRI study may afford a method of confirming central activity and dose selection in early clinical trials for novel experimental therapeutics. [corrected]


Assuntos
Encéfalo/metabolismo , Ketamina/farmacologia , Imageamento por Ressonância Magnética , Receptores de Glutamato Metabotrópico/agonistas , Vigília/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Biomarcadores/sangue , Gasometria/métodos , Encéfalo/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Imageamento por Ressonância Magnética/métodos , Masculino , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/fisiologia , Vigília/fisiologia
18.
J Neuroimmunol ; 211(1-2): 49-55, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19346009

RESUMO

USPIO-enhanced MRI allows non-invasive visualization of mononuclear cell infiltration into CNS lesions in MS and EAE. Herein, we show a distinct spatiotemporal pattern of CNS lesions that reveals the involvement of spino-olivocerebellar pathways in MOG-induced EAE rats using USPIO-enhanced MRI. Specifically, lesions of the inferior olives were observed primarily in the acute phase whereas lesions of cerebellum or spinal cord/brainstem were observed during the relapse phase. Further, behavioral deficits observed from these animals are consistent with the functional role of spino-olivocerebellar pathways in coordination and movement. Collectively, our results provide new insights into the pathophysiology of this animal model of MS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Imageamento por Ressonância Magnética , Vias Neurais/patologia , Medula Espinal/patologia , Animais , Cerebelo/patologia , Dextranos , Feminino , Óxido Ferroso-Férrico , Imuno-Histoquímica , Ferro , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Atividade Motora/fisiologia , Proteínas da Mielina , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Associada a Mielina/toxicidade , Glicoproteína Mielina-Oligodendrócito , Núcleo Olivar/patologia , Óxidos , Compostos Radiofarmacêuticos , Ratos
19.
Mol Interv ; 9(6): 302-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20048136

RESUMO

Scientists engaged in drug discovery and development face many critical issues along the road to identifying the best drug candidates to bring forward for testing in patients. In neuroscience, these challenges can involve particularly demanding questions regarding target engagement, the predict ability of endpoints in animal models, new disease model validation, CNS penetration, and the identification of pharmacodynamic markers. For neurological conditions such as Alzheimer's disease, clinical trials of novel drugs that may modify the course of disease, rather than targeting specific symptoms, add extra layers of complexity. Major studies designed to track the course of a disease increasingly depend on noninvasive, translational imaging. In this brief review, we highlight examples of the new wave of neuroimaging studies that engender useful biomarkers of disease for translational research.


Assuntos
Sistema Nervoso Central/diagnóstico por imagem , Técnicas de Diagnóstico Neurológico , Processamento de Imagem Assistida por Computador/métodos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/patologia , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Radiografia , Tomografia Computadorizada de Emissão de Fóton Único/métodos
20.
J Pharmacol Exp Ther ; 328(1): 141-51, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18931146

RESUMO

Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.


Assuntos
Amidas/farmacologia , Ciclopropanos/farmacologia , Inflamação/fisiopatologia , Dor/fisiopatologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Procedimentos Cirúrgicos Dermatológicos , Membro Posterior , Humanos , Hiperalgesia/fisiopatologia , Rim/embriologia , Imageamento por Ressonância Magnética/métodos , Masculino , Dor Pós-Operatória/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...