Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39199701

RESUMO

Remote photoplethysmography (rPPG) is an emerging non-contact method for monitoring cardiovascular health based on facial videos. The quality of the captured videos largely determines the efficacy of rPPG in this application. Traditional rPPG techniques, while effective for heart rate (HR) estimation, often produce signals with an inadequate signal-to-noise ratio (SNR) for reliable vital sign measurement due to artifacts like head motion and measurement noise. Another pivotal factor is the overlooking of the inherent properties of signals generated by rPPG (rPPG-signals). To address these limitations, we introduce DiffPhys, a novel deep generative model particularly designed to enhance the SNR of rPPG-signals. DiffPhys leverages the conditional diffusion model to learn the distribution of rPPG-signals and uses a refined reverse process to generate rPPG-signals with a higher SNR. Experimental results demonstrate that DiffPhys elevates the SNR of rPPG-signals across within-database and cross-database scenarios, facilitating the extraction of cardiovascular metrics such as HR and HRV with greater precision. This enhancement allows for more accurate monitoring of health conditions in non-clinical settings.

2.
Bioengineering (Basel) ; 11(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38534525

RESUMO

Blood oxygen saturation (SpO2) is an essential physiological parameter for evaluating a person's health. While conventional SpO2 measurement devices like pulse oximeters require skin contact, advanced computer vision technology can enable remote SpO2 monitoring through a regular camera without skin contact. In this paper, we propose novel deep learning models to measure SpO2 remotely from facial videos and evaluate them using a public benchmark database, VIPL-HR. We utilize a spatial-temporal representation to encode SpO2 information recorded by conventional RGB cameras and directly pass it into selected convolutional neural networks to predict SpO2. The best deep learning model achieves 1.274% in mean absolute error and 1.71% in root mean squared error, which exceed the international standard of 4% for an approved pulse oximeter. Our results significantly outperform the conventional analytical Ratio of Ratios model for contactless SpO2 measurement. Results of sensitivity analyses of the influence of spatial-temporal representation color spaces, subject scenarios, acquisition devices, and SpO2 ranges on the model performance are reported with explainability analyses to provide more insights for this emerging research field.

3.
Bioengineering (Basel) ; 10(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37508878

RESUMO

Remote Photoplethysmography (rPPG) is a contactless method that enables the detection of various physiological signals from facial videos. rPPG utilizes a digital camera to detect subtle changes in skin color to measure vital signs such as heart rate variability (HRV), an important biomarker related to the autonomous nervous system. This paper presents a novel contactless HRV extraction algorithm, WaveHRV, based on the Wavelet Scattering Transform technique, followed by adaptive bandpass filtering and inter-beat-interval (IBI) analysis. Furthermore, a novel method is introduced to preprocess noisy contact-based PPG signals. WaveHRV is bench-marked against existing algorithms and public datasets. Our results show that WaveHRV is promising and achieves the lowest mean absolute error (MAE) of 10.5 ms and 6.15 ms for RMSSD and SDNN on the UBFCrPPG dataset.

4.
Healthcare (Basel) ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36292560

RESUMO

Blood pressure (BP) determines whether a person has hypertension and offers implications as to whether he or she could be affected by cardiovascular disease. Cuff-based sphygmomanometers have traditionally provided both accuracy and reliability, but they require bulky equipment and relevant skills to obtain precise measurements. BP measurement from photoplethysmography (PPG) signals has become a promising alternative for convenient and unobtrusive BP monitoring. Moreover, the recent developments in remote photoplethysmography (rPPG) algorithms have enabled new innovations for contactless BP measurement. This paper illustrates the evolution of BP measurement techniques from the biophysical theory, through the development of contact-based BP measurement from PPG signals, and to the modern innovations of contactless BP measurement from rPPG signals. We consolidate knowledge from a diverse background of academic research to highlight the importance of multi-feature analysis for improving measurement accuracy. We conclude with the ongoing challenges, opportunities, and possible future directions in this emerging field of research.

5.
Sensors (Basel) ; 21(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577503

RESUMO

Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin through a video camera. Given the vast potential of this technology in the future of digital healthcare, remote monitoring of physiological signals has gained significant traction in the research community. In recent years, the success of deep learning (DL) methods for image and video analysis has inspired researchers to apply such techniques to various parts of the remote physiological signal extraction pipeline. In this paper, we discuss several recent advances of DL-based methods specifically for remote HR measurement, categorizing them based on model architecture and application. We further detail relevant real-world applications of remote physiological monitoring and summarize various common resources used to accelerate related research progress. Lastly, we analyze the implications of research findings and discuss research gaps to guide future explorations.


Assuntos
Aprendizado Profundo , Algoritmos , Frequência Cardíaca , Humanos , Monitorização Fisiológica , Fotopletismografia , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA