Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453262

RESUMO

Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.

2.
Nat Commun ; 9(1): 2359, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907766

RESUMO

Most of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer. One potentially ideal source could be human red blood cells (RBCs). Group O-RBCs can be used as universal donors for large-scale EV production since they are readily available in blood banks and they are devoid of DNA. Here, we describe and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs. RNA drug delivery with RBCEVs shows highly robust microRNA inhibition and CRISPR-Cas9 genome editing in both human cells and xenograft mouse models, with no observable cytotoxicity.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos/metabolismo , Vesículas Extracelulares , RNA Guia de Cinetoplastídeos , RNA/análise , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , MicroRNAs/genética , Transplante de Neoplasias , Oligonucleotídeos Antissenso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...