Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Ecol Biogeogr ; 33(1): 100-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516343

RESUMO

Aim: The sweeping transformation of the biosphere by humans over the last millennia leaves only limited windows into its natural state. Much of the forests that dominated temperate and southern boreal regions have been lost and those that remain typically bear a strong imprint of forestry activities and past land-use change, which have changed forest age structure and composition. Here, we ask how would the dynamics, structure and function of temperate and boreal forests differ in the absence of forestry and the legacies of land-use change? Location: Global. Time Period: 2001-2014, integrating over the legacy of disturbance events from 1875 to 2014. Major Taxa Studied: Trees. Methods: We constructed an empirical model of natural disturbance probability as a function of community traits and climate, based on observed disturbance rate and form across 77 protected forest landscapes distributed across three continents. Coupling this within a dynamic vegetation model simulating forest composition and structure, we generated estimates of stand-replacing disturbance return intervals in the absence of forestry for northern hemisphere temperate and boreal forests. We then applied this model to calculate forest stand age structure and carbon turnover rates. Results: Comparison with observed disturbance rates revealed human activities to have almost halved the median return interval of stand-replacing disturbances across temperate forest, with more moderate changes in the boreal region. The resulting forests are typically much younger, especially in northern Europe and south-eastern North America, resulting in a 32% reduction in vegetation carbon turnover time across temperate forests and a 7% reduction for boreal forests. Conclusions: The current northern hemisphere temperate forest age structure is dramatically out of equilibrium with its natural disturbance regimes. Shifts towards more nature-based approaches to forest policy and management should more explicitly consider the current disturbance surplus, as it substantially impacts carbon dynamics and litter (including deadwood) stocks.

2.
Glob Chang Biol ; 23(8): 3418-3432, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28067005

RESUMO

Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB ), a proxy of the pool involved in plant nutrition and the total soil P (PTOT ). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB . When the spatial variability was computed between grid cells at half-degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale.


Assuntos
Agricultura , Fósforo/química , Solo/química , Produtos Agrícolas , Plantas
3.
Conserv Biol ; 29(4): 1122-1131, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26129841

RESUMO

Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by lessening the impact of future land-use activities on biodiversity within hotspots.


La Futura Pérdida de Hábitat y Extinciones Causados por el Cambio en el Uso de Suelo en los Puntos Clave de Biodiversidad bajo Cuatro Escenarios de Mitigación de Cambio Climático Resumen Se ha llevado a numerosas especies a la extinción conforme una porción creciente de la superficie terrestre ha sido adueñada por actividades humanas. En el futuro, la biodiversidad global se verá afectada tanto por el cambio climático como por el cambio en el uso de suelo, de los cuales el último es actualmente el principal conductor de la extinción de especies. La manera en que las sociedades aborden el cambio climático afectará críticamente a la biodiversidad ya que las políticas de mitigación de cambio climático reducirán directamente los impactos del cambio climático; sin embargo, estas políticas influenciarán las decisiones de uso de suelo, lo que podría tener impactos negativos sobre el hábitat de numerosas especies. Evaluamos el impacto potencial que podrían tener las futuras políticas de clima sobre la pérdida del área habitable en los puntos clave de biodiversidad debido al cambio asociado en el uso de suelo. Estimamos las extinciones pasadas a partir de cambios históricos en el uso de suelo (1500 - 2005) con base en la extensión del hábitat, los datos de especies para cada punto clave, y la cuadrícula global de datos sobre uso de suelo, la cual fue utilizada para el Reporte de la Quinta Evaluación del Panel Intergubernamental sobre Cambio Climático. Después estimamos las extinciones potenciales causadas por futuros cambios en el uso de suelo bajo escenarios alternativos de cambio climático (2005 - 2100). El número de extinciones de especies adicionales, en relación con aquellas ya provocadas entre 1500 y 2005, causadas por el cambio en el uso de suelo para 2100 en todos los puntos clave, varió aproximadamente de 220 a 21, 000 (0.2% a 16%), dependiendo del escenario de mitigación de cambio climático y factores biológicos, como la pendiente de la relación especies-área y la contribución de la tala a las extinciones. Estas estimaciones de las extinciones potenciales en el futuro fueron causadas solamente por el cambio en el uso de suelo y probablemente habrían sido más altas si se hubiesen considerado los efectos directos del cambio climático. Las extinciones futuras podrían reducirse potencialmente al incorporar la preservación del hábitat al desarrollo del escenario para reducir los futuros cambios en el uso de suelo en los puntos clave o al disminuir el impacto de las futuras actividades de uso de suelo sobre la biodiversidad dentro de los puntos clave.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Animais , Invertebrados , Plantas , Vertebrados
4.
Proc Natl Acad Sci U S A ; 107(46): 19633-8, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20921413

RESUMO

Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.


Assuntos
Agricultura/tendências , Mudança Climática , Conservação de Recursos Energéticos/métodos , Conservação de Recursos Energéticos/tendências , Clima Tropical , Biocombustíveis/análise , Dióxido de Carbono/análise , Modelos Teóricos , Zea mays/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...