Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 7: 66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100942

RESUMO

Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and it is known to converge on extracellular signal-regulated kinase (ERK)-MAPK signaling in neurons. Previous studies suggest that dopamine induces N-methyl-D-aspartate (NMDA) receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.

2.
J Neurosci ; 34(33): 11007-15, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122900

RESUMO

The ability to associate the consumption of a taste with its positive or negative consequences is fundamental to survival and influences the behavior of species ranging from invertebrate to human. As a result, for both research and clinical reasons, there has been a great effort to understand the neuronal circuits, as well as the cellular and molecular mechanisms, underlying taste learning. From a neuroanatomical perspective, the contributions of the cortex and amygdala are well documented; however, the literature is riddled with conflicting results regarding the role of the hippocampus in different facets of taste learning. Here, we use conditional genetics in mice to block NMDA receptor-dependent plasticity individually in each of the three major hippocampal subfields, CA1, CA3, and the dentate gyrus, via deletion of the NR1 subunit. Across the CA1, CA3, and dentate gyrus NR1 knock-out lines, we uncover a pattern of differential deficits that establish the dispensability of hippocampal plasticity in incidental taste learning, the requirement of CA1 plasticity for associative taste learning, and a specific requirement for plasticity in the dentate gyrus when there is a long temporal gap between the taste and its outcome. Together, these data establish that the hippocampus is involved in associative taste learning and suggest an episodic component to this type of memory.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
J Neurosci ; 33(6): 2517-25, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392680

RESUMO

Age-associated memory deterioration (and the decline in ability to acquire new information) is one of the major diseases of our era. Cognitive enhancement can be achieved by using psycho-stimulants, such as caffeine or nicotine, but very little is known about drugs that can enhance the consolidation phase of memories in the cortex, the brain structure considered to store, at least partially, long-term memories. We used cortex-dependent taste-learning paradigms to test the hypothesis that pharmacological manipulation of the translation initiation eIF2α, which plays a role in hippocampus-dependent memory, can enhance positive or negative forms of taste memories. We found that dephosphorylation (Ser51) of eIF2α, specifically in the cortex, is both correlated with and necessary for normal memory consolidation. To reduce eIF2α phosphorylation and improve memory consolidation, we pharmacologically inhibited one of the eIF2α kinases, PKR, which is known to be involved in brain aging and Alzheimer's disease. Systemic or local microinjection of PKR inhibitor to the gustatory cortex enhanced both positive and negative forms of taste memory in rats and mice. Our results provide clear evidence that PKR plays a major role in cortex-dependent memory consolidation and, therefore, that pharmacological inhibition of PKR is a potential target for drugs to enhance cognition.


Assuntos
Córtex Cerebral/enzimologia , Memória de Longo Prazo/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Paladar/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Regulação para Baixo/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Paladar/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-57569

RESUMO

Protein phosphorylation and dephosphorylation form a major post-translation mechanism that enables a given cell to respond to ever-changing internal and external environments. Neurons, similarly to any other cells, use protein phosphorylation/dephosphorylation to maintain an internal homeostasis, but they also use it for updating the state of synaptic and intrinsic properties, following activation by neurotransmitters and growth factors. In the present review we focus on the roles of several families of kinases, phosphatases, and other synaptic-plasticity-related proteins, which activate membrane receptors and various intracellular signals to promote transcription, translation and protein degradation, and to regulate the appropriate cellular proteomes required for taste memory acquisition, consolidation and maintenance. Attention is especially focused on the protein phosphorylation state in two forebrain areas that are necessary for taste-memory learning and retrieval: the insular cortex and the amygdala. The various temporal phases of taste learning require the activation of appropriate waves of biochemical signals. These include: extracellular signal regulated kinase I and II (ERKI/II) signal transduction pathways; Ca(2+)-dependent pathways; tyrosine kinase/phosphatase-dependent pathways; brain-derived neurotrophicfactor (BDNF)-dependent pathways; cAMP-responsive element bindingprotein (CREB); and translation-regulation factors, such as initiation and elongation factors, and the mammalian target of rapamycin (mTOR). Interestingly, coding of hedonic and aversive taste information in the forebrain requires activation of different signal transduction pathways.


Assuntos
Humanos , Tonsila do Cerebelo , Codificação Clínica , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular , Aprendizagem , Membranas , Memória , Neurônios , Neurotransmissores , Fatores de Alongamento de Peptídeos , Monoéster Fosfórico Hidrolases , Fosforilação , Fosfotransferases , Prosencéfalo , Proteínas , Proteólise , Proteoma , Transdução de Sinais , Sirolimo , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...