Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 6448, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691456

RESUMO

Concrete is a strong and fairly inexpensive building substance, but has several disadvantages like cracking that allows corrosion, thus reducing its lifespan. To mitigate these complications, long-lasting microbial self-healing cement is an alternative that is eco-friendly and also actively repairs cracks. The present paper describes the detailed experimental investigation on compressive strength of cement mortars, mixed with six alkaliphilic bacteria, isolated from subsurface mica mines of high alkalinity. The experiments showed that the addition of alkaliphilic isolates at different cell concentrations (104 and 106 cells/ml) enhanced the compressive strength of cement mortar, because the rapid growth of bacteria at high alkalinity precipitates calcite crystals that lead to filling of pores and densifying the concrete mix. Thus, Bacillus subtilis (SVUNM4) showed the highest compressive strength (28.61%) of cement mortar at 104 cells/ml compared to those of other five alkaliphilic isolates (Brevibacillus sp., SVUNM15-22.1%; P. dendritiformis, SVUNM11-19.9%; B. methylotrophicus, SVUNM9-16%; B. licheniformis, SVUNM14-12.7% and S. maltophilia, SVUNM13-9.6%) and controlled cement mortar as well. This method resulted in the filling of cracks in concrete with calcite (CaCO3), which was observed by scanning electron microscopy (SEM). Our results showed that the alkaliphilic bacterial isolates used in the study are effective in self-healing and repair of concrete cracks.


Assuntos
Materiais de Construção/microbiologia , Bactérias Formadoras de Endosporo/metabolismo , Microbiologia Industrial/métodos , Álcalis/química , Bacillus/química , Bacillus/isolamento & purificação , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Brevibacillus/química , Brevibacillus/isolamento & purificação , Carbonato de Cálcio/química , Força Compressiva , Microscopia Eletrônica de Varredura , Paenibacillus/química , Paenibacillus/isolamento & purificação , Stenotrophomonas/química , Stenotrophomonas/isolamento & purificação
2.
Scientifica (Cairo) ; 2015: 319760, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26525498

RESUMO

The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and Energy Dispersive Spectroscopy (EDS) as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87-90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner.

3.
Bioinformation ; 8(20): 974-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23275690

RESUMO

Plant peroxidases are one of the most extensively studied group of enzymes which find applications in the environment, health, pharmaceutical, chemical and biotechnological processes. Class III secretary peroxidase from alfalfa (Medicago sativa) has been characterized using bioinformatics approach Physiochemical properties and topology of alfalfa peroxidase were compared with that of soybean and horseradish peroxidase, two most popular commercially available peroxidase preparations. Lower value of instability index as predicted by ProtParam and presence of extra disulphide linkages as predicted by Cys_REC suggested alfalfa peroxidase to be more stable than either of the commercial preparations. Multiple Sequence Alignment (MSA) with other functionally similar proteins revealed the presence of highly conserved catalytic residues. Three dimensional model of alfalfa peroxidase was constructed based on the crystal structure of soybean peroxidase (PDB Id: 1FHF A) by homology modelling approach. The model was checked for stereo chemical quality by PROCHECH, VERIFY 3D, WHAT IF, ERRAT, 3D MATCH AND ProSA servers. The best model was selected, energy minimized and used to analyze structure function relationship with substrate hydrogen peroxide by Autodock 4.0. The enzyme substrate complex was viewed with Swiss PDB viewer and one residue ASP43 was found to stabilize the interaction by hydrogen bonds. The results of the study may be a guiding point for further investigations on alfalfa peroxidase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...