Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 741: 140179, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886979

RESUMO

Variable renewable energy sources display different space-time variability driving the availability of energy generated from these sources. Complementarity among variable renewable energies in time and space allows reducing the variability of power supply and helps matching the electricity demand curve. This work investigates the temporal structure of complementarity along an alpine transect in North-East Italy, considering a 100% renewable energy mix scenario composed by photovoltaic and run-of-the-river energy. We analyze the dominant scales of variability of variable renewable energy sources and electricity demand. In addition, we introduce a new metric, the wavelet-based complementarity index, to quantify the potential complementarity between two different energy sources. We show that this index varies at different temporal scales and it helps explaining the discrepancy between demand and supply in the study area. Continuous and discrete wavelet analyses are applied to assess the energy balance variability at multiple temporal scales and to identify the optimal mix of renewable energies, respectively. This work describes therefore an effective approach to investigate the temporal-scale dependency of the variance in the energy balance and can be further extended to different and more complex situations.

2.
Proc Math Phys Eng Sci ; 472(2187): 20150730, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27118915

RESUMO

A material fluid element within a porous medium experiences deformations due to the disordered spatial distribution of the Darcy scale velocity field, caused by the heterogeneity of hydraulic conductivity. A physical consequence of this heterogeneity is the presence of localized kinematical features such as straining, shearing and vorticity in the fluid element. These kinematical features will influence the shape of solute clouds and their fate. Studies on the deformation of material surfaces highlighted the importance of stretching and shearing, whereas vorticity received so far less attention, though it determines folding, a deformation associated with the local rotation of the velocity field. We study vorticity in a three-dimensional porous formation exploring how its fluctuations are influenced by the spatial structure of the porous media, obtained by immersing spheroidal inclusions into a matrix of constant hydraulic conductivity. By comparing porous formations with the same spatial statistics, we analyse how vorticity is affected by the different shape and arrangement of inclusions, defined as the medium 'microstructure'. We conclude that, as microstructure has a significant impact on vorticity fluctuations, the usual second-order statistical description of the conductivity field is unable to capture local deformations of the plume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...