Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 43(2): e20190267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478796

RESUMO

Fusarium oxysporum f. sp. phaseoli (Fop) J.B. Kendrich & W.C. Snyder is the causal agent of Fusarium wilt of common bean (Phaseolus vulgaris L.). The objective of this study was to develop microsatellite markers (SSRs) to characterize the genetic diversity of Fop. Two libraries enriched with SSRs were developed and a total of 40 pairs of SSRs were characterized. Out of these, 15 SSRs were polymorphic for 42 Fop isolates. The number of alleles varied from two to ten, with an average of four alleles per locus and an average PIC (Polymorphic Information Content) of 0.38. The genetic diversity assessed by microsatellites for Fop was low, as expected for an asexual fungus, and not associated with geographic origin, but they were able to detect enough genetic variability among isolates in order to differentiate them. Microsatellites are a robust tool widely used for genetic fingerprinting and population structure analyses. SSRs for Fop may be an efficient tool for a better understanding of the ecology, epidemiology and evolution of this pathogen.

2.
Genes (Basel) ; 10(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583474

RESUMO

Phaseolus vulgaris is an important grain legume for human consumption. Recently, association mapping studies have been performed for the species aiming to identify loci underlying quantitative variation of traits. It is now imperative to know whether the linkage disequilibrium (LD) reflects the true association between a marker and causative loci. The aim of this study was to estimate and analyze LD on a diversity panel of common beans using ordinary r² and r2 extensions which correct bias due to population structure (rS²), kinship (rV²), and both (rVS²). A total of 10,362 single nucleotide polymorphisms (SNPs) were identified by genotyping by sequencing (GBS), and polymorphisms were found to be widely distributed along the 11 chromosomes. In terms of r2, high values of LD (over 0.8) were identified between SNPs located at opposite chromosomal ends. Estimates for rV² were lower than those for rS². Results for rV² and rVS² were similar, suggesting that kinship may also include information on population structure. Over genetic distance, LD decayed to 0.1 at a distance of 1 Mb for rVS². Inter-chromosomal LD was also evidenced. This study showed that LD estimates decay dramatically according to the population structure, and especially the degree of kinship. Importantly, the LD estimates reported herein may influence our ability to perform association mapping studies on P. vulgaris.

3.
Front Plant Sci ; 6: 152, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815001

RESUMO

Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (QTL). In this study, we determined the gene content of the major QTL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvul.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to P. griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...