Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(10): e2300234, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401196

RESUMO

Electrochemical reduction of oxygen into hydrogen peroxide in an acidic medium offers an energy-efficient and green H2 O2 synthesis as an alternative to the energy-intensive anthraquinone process. Unfortunately, high overpotential, low production rates, and fierce competition from traditional four-electron reduction limit it. In this study, a metalloenzyme-like active structure is mimicked in carbon-based single-atom electrocatalysts for oxygen reduction to H2 O2 . Using a carbonization strategy, the primary electronic structure of the metal center with nitrogen and oxygen coordination is modulated, followed by epoxy oxygen functionalities close to the metal active sites. In an acidic medium, CoNOC active structures proceed with greater than 98% H2 O2 selectivity (2e- /2H+ ) rather than CoNC active sites that are selective to H2 O (4e- /4H+ ). Among all MNOC (M = Fe, Co, Mn, and Ni) single-atom electrocatalysts, the CoNOC is the most selective (> 98%) for H2 O2 production, with a mass activity of 10 A g-1 at 0.60 V vs. RHE. X-ray absorption spectroscopy is used to identify the formation of unsymmetrical MNOC active structures. Experimental results are also compared to density functional theory calculations, which revealed that the structure-activity relationship of the epoxy-surrounded CoNOC active structure reaches optimum (ΔG*OOH ) binding energies for high selectivity.

2.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296846

RESUMO

Bismuth vanadate (BiVO4) has attracted substantial attention on account of its usefulness in producing hydrogen by photoelectrochemical (PEC) water splitting. The exploitation of BiVO4 for this purpose is yet limited by severe charge recombination in the bulk of BiVO4, which is caused by the short diffusion length of the photoexcited charge carriers and inefficient charge separation. Enormous effort has been made to improve the photocurrent density and solar-to-hydrogen conversion efficiency of BiVO4. This study demonstrates that modulating the composition of the electrode and the electronic configuration of BiVO4 by decoration with silver nanoparticles (Ag NPs) is effective in not only enhancing the charge carrier concentration but also suppressing charge recombination in the solar water splitting process. Decoration with a small number of Ag NPs significantly enhances the photocurrent density of BiVO4 to an extent that increases with the concentration of the Ag NPs. At 0.5% Ag NPs, the photocurrent density approaches 4.1 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) under solar simulated light illumination; this value is much higher than the 2.3 mA cm-2 of pure BiVO4 under the same conditions. X-ray absorption spectroscopy (XAS) is utilized to investigate the electronic structure of pure BiVO4 and its modification by decoration with Ag NPs. Analytical results indicate that increased distortion of the VO4 tetrahedra alters the V 3d-O 2p hybridized states. Additionally, as the Ag concentration increases, the oxygen vacancy defects that act as recombination centers in BiVO4 are reduced. In situ XAS, which is conducted under dark and solar illumination conditions, reveals that the significantly enhanced PEC performance is attributable to the synergy of modulated atomic/electronic structures and the localized surface plasmon resonance effect of the Ag nanoparticles.

3.
J Am Chem Soc ; 144(34): 15718-15726, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975916

RESUMO

"Spin" has been recently reported as an important degree of electronic freedom to improve the performance of electrocatalysts and photocatalysts. This work demonstrates the manipulations of spin-polarized electrons in CsPbBr3 halide perovskite nanoplates (NPLs) to boost the photocatalytic CO2 reduction reaction (CO2RR) efficiencies by doping manganese cations (Mn2+) and applying an external magnetic field. Mn-doped CsPbBr3 (Mn-CsPbBr3) NPLs exhibit an outstanding photocatalytic CO2RR compared to pristine CsPbBr3 NPLs due to creating spin-polarized electrons after Mn doping. Notably, the photocatalytic CO2RR of Mn-CsPbBr3 NPLs is significantly enhanced by applying an external magnetic field. Mn-CsPbBr3 NPLs exhibit 5.7 times improved performance of photocatalytic CO2RR under a magnetic field of 300 mT with a permanent magnet compared to pristine CsPbBr3 NPLs. The corresponding mechanism is systematically investigated by magnetic circular dichroism spectroscopy, ultrafast transient absorption spectroscopy, and density functional theory simulation. The origin of enhanced photocatalytic CO2RR efficiencies of Mn-CsPbBr3 NPLs is due to the increased number of spin-polarized photoexcited carriers by synergistic doping of the magnetic elements and applying a magnetic field, resulting in prolonged carrier lifetime and suppressed charge recombination. Our result shows that manipulating spin-polarized electrons in photocatalytic semiconductors provides an effective strategy to boost photocatalytic CO2RR efficiencies.

4.
Small ; 18(2): e2105076, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34799991

RESUMO

Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,ß resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2 . Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2 .

5.
ACS Appl Mater Interfaces ; 13(35): 41524-41536, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436855

RESUMO

Synchrotron-based X-ray spectroscopic and microscopic techniques are used to identify the origin of enhancement of the photoelectrochemical (PEC) properties of BiVO4 (BVO) that is coated on ZnO nanodendrites (hereafter referred to as BVO/ZnO). The atomic and electronic structures of core-shell BVO/ZnO nanodendrites have been well-characterized, and the heterojunction has been determined to favor the migration of charge carriers under the PEC condition. The variation of charge density between ZnO and BVO in core-shell BVO/ZnO nanodendrites with many unpaired O 2p-derived states at the interface forms interfacial oxygen defects and yields a band gap of approximately 2.6 eV in BVO/ZnO nanocomposites. Atomic structural distortions at the interface of BVO/ZnO nanodendrites, which support the fact that there are many interfacial oxygen defects, affect the O 2p-V 3d hybridization and reduce the crystal field energy 10Dq ∼2.1 eV. Such an interfacial atomic/electronic structure and band gap modulation increase the efficiency of absorption of solar light and electron-hole separation. This study provides evidence that the interfacial oxygen defects act as a trapping center and are critical for the charge transfer, retarding electron-hole recombination, and high absorption of visible light, which can result in favorable PEC properties of a nanostructured core-shell BVO/ZnO heterojunction. Insights into the local atomic and electronic structures of the BVO/ZnO heterojunction support the fabrication of semiconductor heterojunctions with optimal compositions and an optimal interface, which are sought to maximize solar light utilization and the transportation of charge carriers for PEC water splitting and related applications.

6.
Sci Rep ; 10(1): 12725, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728171

RESUMO

A series of Eu3+-activated strontium silicate phosphors, Sr2SiO4:xEu3+ (SSO:xEu3+, x = 1.0, 2.0 and 5.0%), were synthesized by a sol-gel method, and their crystalline structures, photoluminescence (PL) behaviors, electronic/atomic structures and bandgap properties were studied. The correlation among these characteristics was further established. X-ray powder diffraction analysis revealed the formation of mixed orthorhombic α'-SSO and monoclinic ß-SSO phases of the SSO:xEu3+ phosphors. When SSO:xEu3+ phosphors are excited under ultraviolet (UV) light (λ = 250 nm, ~ 4.96 eV), they emit yellow (~ 590 nm), orange (~ 613 nm) and red (~ 652 and 703 nm) PL bands. These PL emissions typically correspond to 4f-4f electronic transitions that involve the multiple excited 5D0 → 7FJ levels (J = 1, 2, 3 and 4) of Eu3+ activators in the host matrix. This mechanism of PL in the SSO:xEu3+ phosphors is strongly related to the local electronic/atomic structures of the Eu3+-O2- associations and the bandgap of the host lattice, as verified by Sr K-edge and Eu L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure, O K-edge XANES and Kα X-ray emission spectroscopy. In the synthesis of SSO:xEu3+ phosphors, interstitial Eu2O3-like structures are observed in the host matrix that act as donors, providing electrons that are nonradiatively transferred from the Eu 5d and/or O 2p-Eu 4f/5d states (mostly the O 2p-Eu 5d states) to the 5D0 levels, facilitating the recombination of electrons that have transitioned from the 5D0 level to the 7FJ level in the bandgap. This mechanism is primarily responsible for the enhancement of PL emissions in the SSO:xEu3+ phosphors. This PL-related behavior indicates that SSO:xEu3+ phosphors are good light-conversion phosphor candidates for use in near-UV chips and can be very effective in UV-based light-emitting diodes.

7.
Sci Rep ; 7: 42235, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186190

RESUMO

Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

8.
Nanoscale ; 6(15): 9166-76, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24978624

RESUMO

Efforts have been made to elucidate the origin of d(0) magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.


Assuntos
Nanoestruturas , Nanotecnologia/métodos , Óxido de Zinco/química , Análise de Fourier , Luminescência , Magnetismo , Nanofios , Oxigênio/química , Espectrofotometria , Propriedades de Superfície , Temperatura , Compostos de Estanho/química , Espectroscopia por Absorção de Raios X , Raios X
9.
Nanoscale ; 5(15): 6812-8, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23765234

RESUMO

The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

10.
Langmuir ; 24(6): 2680-7, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18251561

RESUMO

It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds and C-O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide-mineral molecular associations.


Assuntos
Carbonato de Cálcio/química , Proteínas da Matriz Extracelular/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Proteínas da Matriz Extracelular/isolamento & purificação , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/isolamento & purificação , Análise Espectral/métodos , Propriedades de Superfície , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...