Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Sci ; 47: e96, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770872

RESUMO

Ivancovsky et al. argue that the neurocognitive mechanisms of creativity and curiosity both rely on the interplay among brain networks. Research to date demonstrates that such inter-network dynamics are further complicated by functional fractionation within networks. Investigating how networks subdivide and reconfigure in service of a task offers insights about the precise anatomy that underpins creative and curious behaviour.


Assuntos
Encéfalo , Criatividade , Comportamento Exploratório , Rede Nervosa , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
2.
Trends Cogn Sci ; 27(11): 993-995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634952

RESUMO

Semantic cognition and numerical cognition are dissociable faculties with separable neural mechanisms. However, recent advances in the cortical topography of the temporal and parietal lobes have revealed a common organisational principle for the neural representations of semantics and numbers. We discuss their convergence and divergence through the prism of topography.

3.
Cereb Cortex ; 33(4): 1277-1299, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35394005

RESUMO

Research of social neuroscience establishes that regions in the brain's default-mode network (DN) and semantic network (SN) are engaged by socio-cognitive tasks. Research of the human connectome shows that DN and SN regions are both situated at the transmodal end of a cortical gradient but differ in their loci along this gradient. Here we integrated these 2 bodies of research, used the psychological continuity of self versus other as a "test-case," and used functional magnetic resonance imaging to investigate whether these 2 networks would encode social concepts differently. We found a robust dissociation between the DN and SN-while both networks contained sufficient information for decoding broad-stroke distinction of social categories, the DN carried more generalizable information for cross-classifying across social distance and emotive valence than did the SN. We also found that the overarching distinction of self versus other was a principal divider of the representational space while social distance was an auxiliary factor (subdivision, nested within the principal dimension), and this representational landscape was more manifested in the DN than in the SN. Taken together, our findings demonstrate how insights from connectome research can benefit social neuroscience and have implications for clarifying the 2 networks' differential contributions to social cognition.


Assuntos
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Cognição Social , Rede Nervosa , Vias Neurais , Imageamento por Ressonância Magnética/métodos , Cognição
4.
Cereb Cortex ; 33(8): 4512-4526, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36130101

RESUMO

Semantic control is the capability to operate on meaningful representations, selectively focusing on certain aspects of meaning while purposefully ignoring other aspects based on one's behavioral aim. This ability is especially vital for comprehending figurative/ambiguous language. It remains unclear why and how regions involved in semantic control seem reliably juxtaposed alongside other functionally specialized regions in the association cortex, prompting speculation about the relationship between topography and function. We investigated this issue by characterizing how semantic control regions topographically relate to the default-mode network (associated with memory and abstract cognition) and multiple-demand network (associated with executive control). Topographically, we established that semantic control areas were sandwiched by the default-mode and multi-demand networks, forming an orderly arrangement observed both at the individual and group level. Functionally, semantic control regions exhibited "hybrid" responses, fusing generic preferences for cognitively demanding operation (multiple-demand) and for meaningful representations (default-mode) into a domain-specific preference for difficult operation on meaningful representations. When projected onto the principal gradient of human connectome, the neural activity of semantic control showed a robustly dissociable trajectory from visuospatial control, implying different roles in the functional transition from sensation to cognition. We discuss why the hybrid functional profile of semantic control regions might result from their intermediate topographical positions on the cortex.


Assuntos
Função Executiva , Semântica , Humanos , Função Executiva/fisiologia , Imageamento por Ressonância Magnética , Cognição/fisiologia , Idioma , Mapeamento Encefálico
5.
Neuroimage ; 236: 118230, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089873

RESUMO

The flexible retrieval of knowledge is critical in everyday situations involving problem solving, reasoning and social interaction. Current theories emphasise the importance of a left-lateralised semantic control network (SCN) in supporting flexible semantic behaviour, while a bilateral multiple-demand network (MDN) is implicated in executive functions across domains. No study, however, has examined whether semantic and non-semantic demands are reflected in a common neural code within regions specifically implicated in semantic control. Using functional MRI and univariate parametric modulation analysis as well as multivariate pattern analysis, we found that semantic and non-semantic demands gave rise to both similar and distinct neural responses across control-related networks. Though activity patterns in SCN and MDN could decode the difficulty of both semantic and verbal working memory decisions, there was no shared common neural coding of cognitive demands in SCN regions. In contrast, regions in MDN showed common patterns across manipulations of semantic and working memory control demands, with successful cross-classification of difficulty across tasks. Therefore, SCN and MDN can be dissociated according to the information they maintain about cognitive demands.


Assuntos
Associação , Córtex Cerebral/fisiologia , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Reconhecimento Visual de Modelos/fisiologia , Leitura , Semântica , Máquina de Vetores de Suporte , Aprendizagem Verbal/fisiologia , Adulto Jovem
7.
Cereb Cortex ; 30(10): 5484-5501, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494802

RESUMO

Our understanding about the functionality of the brain's default network (DN) has significantly evolved over the past decade. Whereas traditional views define this network based on its suspension/disengagement during task-oriented behavior, contemporary accounts have characterized various situations wherein the DN actively contributes to task performance. However, it is unclear how different task-contexts drive componential regions of the DN to coalesce into a unitary network and fractionate into different subnetworks. Here we report a compendium of evidence that provides answers to these questions. Across multiple analyses, we found a striking dyadic structure within the DN in terms of the profiles of task-triggered fMRI response and effective connectivity, significantly extending beyond previous inferences based on meta-analysis and resting-state activities. In this dichotomy, one subset of DN regions prefers mental activities "interfacing with" perceptible events, while the other subset prefers activities "detached from" perceptible events. While both show a common "aversion" to sensory-motoric activities, their differential preferences manifest a subdivision that sheds light upon the taxonomy of the brain's memory systems. This dichotomy is consistent with proposals of a macroscale gradational structure spanning across the cerebrum. This gradient increases its representational complexity, from primitive sensory-motoric processing, through lexical-semantic representations, to elaborated self-generated thoughts.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Rede de Modo Padrão/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Psicofísica , Semântica , Adulto Jovem
8.
Neuroimage ; 199: 114-126, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132452

RESUMO

The neural architecture of semantic knowledge comprises two key structures: (i) A set of widely dispersed regions, located adjacent to the sensorimotor cortices, serve as spokes that represent various modality-specific and context-dependent contents. (ii) The anterior-temporal lobe (ATL) serves as a hub that computes the nonlinear mappings required to transform modality-specific information into pan-modality, multifaceted concepts. Little is understood regarding whether neural dynamics between the hub and spokes might flexibly alter depending on the nature of a concept and how it impinges upon behaviour. Using fMRI, we demonstrate for the first time that the ATL serves as a 'pivot' which dynamically forms flexible long-range networks with cortical modules specialised for different domains (in the present case, the knowledge about actions and places). In two experiments, we manipulated semantic congruity and asked participants to recognise visually presented items. In Experiment 1 (dual-object displays), the ATL increased its functional coupling with the bilateral frontoparietal action-sensitive system when the objects formed a pair that permitted semantically meaningful action. In Experiment 2 (objects embedded in a scene), the ATL augmented its coupling with the retrosplenial cortex of the place-sensitive system when the objects and scene formed a semantically coherent ensemble. Causative connectivity revealed that, while communication between the hub and spokes was bidirectional, the hub's directional impact on spokes dwarfed the strength of the inverse spoke-to-hub connectivity. Furthermore, the size of behavioural congruity effects co-varied with the strength of neural coupling between the ATL hub and action- / place-related spokes, evident both at the within-individual level (the behavioural fluctuation across scanning runs) and between-individual level (the behavioural variation of between participants). Together, these findings have important implications for understanding the machinery that links neural dynamics with semantic cognition.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Semântica , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
9.
Cognition ; 177: 107-121, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29660563

RESUMO

Individuals with grapheme-colour synaesthesia experience anomalous colours when reading achromatic text. These unusual experiences have been said to resemble 'normal' colour perception or colour imagery, but studying the nature of synaesthesia remains difficult. In the present study, we report novel evidence that synaesthetic colour impacts conscious vision in a way that is different from both colour perception and imagery. Presenting 'normal' colour prior to binocular rivalry induces a location-dependent suppressive bias reflecting local habituation. By contrast, a grapheme that evokes synaesthetic colour induces a facilitatory bias reflecting priming that is not constrained to the inducing grapheme's location. This priming does not occur in non-synaesthetes and does not result from response bias. It is sensitive to diversion of visual attention away from the grapheme, but resistant to sensory perturbation, reflecting a reliance on cognitive rather than sensory mechanisms. Whereas colour imagery in non-synaesthetes causes local priming that relies on the locus of imagined colour, imagery in synaesthetes caused global priming not dependent on the locus of imagery. These data suggest a unique psychophysical profile of high-level colour processing in synaesthetes. Our novel findings and method will be critical to testing theories of synaesthesia and visual awareness.


Assuntos
Percepção de Cores , Imaginação , Transtornos da Percepção , Visão Binocular , Adulto , Cor , Feminino , Humanos , Masculino , Estimulação Luminosa , Psicofísica , Sinestesia
10.
Cortex ; 103: 100-116, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604611

RESUMO

Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Formação de Conceito/fisiologia , Função Executiva/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Neuroimagem , Adulto Jovem
11.
Neuroimage ; 169: 453-461, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29289617

RESUMO

Working memory (WM) is a buffer that temporarily maintains information, be it visual or auditory, in an active state, caching its contents for online rehearsal or manipulation. How the brain enables long-term semantic knowledge to affect the WM buffer is a theoretically significant issue awaiting further investigation. In the present study, we capitalise on the knowledge about famous individuals as a 'test-case' to study how it impinges upon WM capacity for human faces and its neural substrate. Using continuous theta-burst transcranial stimulation combined with a psychophysical task probing WM storage for varying contents, we provide compelling evidence that (1) faces (regardless of familiarity) continued to accrue in the WM buffer with longer encoding time, whereas for meaningless stimuli (colour shades) there was little increment; (2) the rate of WM accrual was significantly more efficient for famous faces, compared to unknown faces; (3) the right anterior-ventrolateral temporal lobe (ATL) causally mediated this superior WM storage for famous faces. Specifically, disrupting the ATL (a region tuned to semantic knowledge including person identity) selectively hinders WM accrual for celebrity faces while leaving the accrual for unfamiliar faces intact. Further, this 'semantically-accelerated' storage is impervious to disruption of the right middle frontal gyrus and vertex, supporting the specific and causative contribution of the right ATL. Our finding advances the understanding of the neural architecture of WM, demonstrating that it depends on interaction with long-term semantic knowledge underpinned by the ATL, which causally expands the WM buffer when visual content carries semantic information.


Assuntos
Reconhecimento Facial/fisiologia , Memória de Curto Prazo/fisiologia , Reconhecimento Psicológico/fisiologia , Semântica , Lobo Temporal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
12.
Elife ; 52016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27726845

RESUMO

Hallucinations occur in both normal and clinical populations. Due to their unpredictability and complexity, the mechanisms underlying hallucinations remain largely untested. Here we show that visual hallucinations can be induced in the normal population by visual flicker, limited to an annulus that constricts content complexity to simple moving grey blobs, allowing objective mechanistic investigation. Hallucination strength peaked at ~11 Hz flicker and was dependent on cortical processing. Hallucinated motion speed increased with flicker rate, when mapped onto visual cortex it was independent of eccentricity, underwent local sensory adaptation and showed the same bistable and mnemonic dynamics as sensory perception. A neural field model with motion selectivity provides a mechanism for both hallucinations and perception. Our results demonstrate that hallucinations can be studied objectively, and they share multiple mechanisms with sensory perception. We anticipate that this assay will be critical to test theories of human consciousness and clinical models of hallucination.


Assuntos
Alucinações , Córtex Visual/fisiologia , Humanos , Modelos Neurológicos
13.
J Neurosci ; 36(17): 4662-8, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122025

RESUMO

UNLABELLED: Object size is represented by functionally distinct sectors along the ventral visual pathway. The early visual cortex encodes objects' sensory-retinal size. Subsequently, the occipitotemporal cortex computes objects' canonical size based on statistical regularities of visual features. Although the neurocomputation of size has been studied in a "bottom-up" sensory-driven framework, little is known about how perceptual size information is transformed into conceptual knowledge and how this computation is modulated by "top-down" goal-driven signals. Using continuous theta burst stimulation, we demonstrated that behavioral goal shapes the neurocognitive network underpinning object size. We manipulated the congruency of perceptual versus conceptual object size, which provides a robust behavioral probe reflecting implicit size knowledge. Neurostimulation was targeted at the lateral occipital cortex (LOC), a key region for object perception, or the anterior temporal lobe (ATL), a "hub" of supramodal conceptual processing. We observed striking contextual modulation of the neurocognitive architecture: when human participants judged perceptual size, the congruency effect was significantly attenuated by LOC stimulation but stayed resilient to ATL stimulation. By contrast, when they judged conceptual size, both LOC and ATL stimulation eradicated the otherwise robust effect. Our findings demonstrate disparate functional profiles of the LOC and ATL, providing the first evidence of a malleable network adaptively altering its division of labor with top-down states. The LOC, regardless of task demand, automatically represents "bottom-up" statistical regularities of visual conformation (reflecting typical object size), whereas the ATL contributes to this computation when the context requires semantically based linkage of visual attributes to object recognition. SIGNIFICANCE STATEMENT: In the present study, we provide compelling evidence that the "top-down" cognitive state of an observer changes the dynamic interaction between different subregions of the ventral temporal cortex. Using inhibitory neurostimulation combined with a novel paradigm, we demonstrate a flexible division of labor in the neurocognitive architecture that underpins size knowledge: the lateral occipital cortex codes perceptually based aspects (statistical visual configuration of small/large objects), whereas the anterior temporal lobe represents semantically based aspects (object identity), with their involvement interactively weighted by task demand. The interactive nature of the ventral temporal cortex highlights how top-down modulation constrains and shapes neural representations in the visual system.


Assuntos
Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Córtex Visual/fisiologia
14.
Cortex ; 79: 75-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27088615

RESUMO

Perception emerges from a dynamic interplay between feed-forward sensory input and feedback modulation along the cascade of neural processing. Prior knowledge, a major form of top-down modulatory signal, benefits perception by enabling efficacious inference and resolving ambiguity, particularly under circumstances of degraded visual input. Despite semantic information being a potentially critical source of this top-down influence, to date, the core neural substrate of semantic knowledge (the anterolateral temporal lobe - ATL) has not been considered as a key component of the feedback system. Here we provide direct evidence of its significance for visual cognition - the ATL underpins the semantic aspect of object recognition, amalgamating sensory-based (amount of accumulated sensory input) and semantic-based (representational proximity between exemplars and typicality of appearance) influences. Using transcranial theta-burst stimulation combined with a novel visual identification paradigm, we demonstrate that the left ATL contributes to discrimination between visual objects. Crucially, its contribution is especially vital under situations where semantic knowledge is most needed for supplementing deficiency of input (brief visual exposure), discerning analogously-coded exemplars (close representational distance), and resolving discordance (target appearance violating the statistical typicality of its category). Our findings characterise functional properties of the ATL in object recognition: this neural structure is summoned to augment the visual system when the latter is overtaxed by challenging conditions (insufficient input, overlapped neural coding, and conflict between incoming signal and expected configuration). This suggests a need to revisit current theories of object recognition, incorporating the ATL that interfaces high-level vision with semantic knowledge.


Assuntos
Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Lobo Temporal/diagnóstico por imagem , Estimulação Magnética Transcraniana , Adulto Jovem
15.
Perception ; 44(2): 169-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26561970

RESUMO

Our cognitive system tends to link auditory pitch with spatial location in a specific manner (ie high-pitched sounds are usually associated with an upper location, and low sounds are associated with a lower location). Recent studies have demonstrated that this cross-modality association biases the allocation of visual attention and affects performance despite the auditory stimuli being irrelevant to the behavioural task. There is, however, a discrepancy between studies in their interpretation of the underlying mechanisms. Whereas we have previously claimed that the pitch-location mapping is mediated by volitional shifts of attention (Chiou & Rich, 2012, Perception, 41: , 339-353), other researchers suggest that this cross-modal effect reflects automatic shifts of attention (Mossbridge, Grabowecky, & Suzuki, 2011, Cognition, 121: , 133-139). Here we report a series of three experiments examining the effects of perceptual and response-related pressure on the ability of nonpredictive pitch to bias visual attention. We compare it with two control cues: a predictive pitch that triggers voluntary attention shifts and a salient peripheral flash that evokes involuntary shifts. The results show that the effect of nonpredictive pitch is abolished by pressure at either perceptual or response levels. By contrast, the effects of the two control cues remain significant, demonstrating the robustness of informative and perceptually salient stimuli in directing attention. This distinction suggests that, in contexts of high perceptual demand and response pressure, cognitive resources are primarily engaged by the task-relevant stimuli, which effectively prevents uninformative pitch from orienting attention to its cross-modally associated location. These findings are consistent with the hypothesis that the link between pitch and location affects attentional deployment via volitional rather than automatic mechanisms.


Assuntos
Atenção/fisiologia , Sinais (Psicologia) , Percepção da Altura Sonora/fisiologia , Percepção Espacial/fisiologia , Volição/fisiologia , Adulto , Feminino , Humanos , Masculino , Orientação Espacial/fisiologia , Adulto Jovem
16.
Front Psychol ; 5: 105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653707

RESUMO

Synesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers) and synesthetic experiences (concurrents) may occur within the same modality (e.g., seeing colors while reading achromatic text) or span across different modalities (e.g., tasting flavors while listening to music). Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synesthesia, the focus of current neurocognitive models of synesthesia does not encompass many crucial psychophysical characteristics documented in behavioral research. Prominent theories of the neurophysiological basis of synesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioral studies, however, suggest an essential role for conceptual-level information in synesthesia. For example, there is evidence that synesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system), such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural levels. We then present a conceptual-mediation model of synesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This "inducer-to-concurrent" nexus is maintained within a supramodal "hub," while the subjective (bodily) experience of its resultant concurrent (e.g., a color) may then require activation of "spokes" in the perception-related cortices. This hypothesized "hub-and-spoke" structure would engage a distributed network of cortical regions and may account for the full breadth of this intriguing phenomenon.

17.
J Cogn Neurosci ; 26(5): 1066-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24345174

RESUMO

Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.


Assuntos
Percepção de Cores/fisiologia , Estimulação Luminosa/métodos , Lobo Temporal/fisiologia , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Cor , Feminino , Humanos , Masculino , Adulto Jovem
18.
Cortex ; 49(6): 1750-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22673231

RESUMO

Our brain constantly integrates signals across different senses. Auditory-visual synaesthesia is an unusual form of cross-modal integration in which sounds evoke involuntary visual experiences. Previous research primarily focuses on synaesthetic colour, but little is known about non-colour synaesthetic visual features. Here we studied a group of synaesthetes for whom sounds elicit consistent visual experiences of coloured 'geometric objects' located at specific spatial location. Changes in auditory pitch alter the brightness, size, and spatial height of synaesthetic experiences in a systematic manner resembling the cross-modal correspondences of non-synaesthetes, implying synaesthesia may recruit cognitive/neural mechanisms for 'normal' cross-modal processes. To objectively assess the impact of synaesthetic objects on behaviour, we devised a multi-feature cross-modal synaesthetic congruency paradigm and asked participants to perform speeded colour or shape discrimination. We found irrelevant sounds influenced performance, as quantified by congruency effects, demonstrating that synaesthetes were not able to suppress their synaesthetic experiences even when these were irrelevant for the task. Furthermore, we found some evidence for task-specific effects consistent with feature-based attention acting on the constituent features of synaesthetic objects: synaesthetic colours appeared to have a stronger impact on performance than synaesthetic shapes when synaesthetes attended to colour, and vice versa when they attended to shape. We provide the first objective evidence that visual synaesthetic experience can involve multiple features forming object-like percepts and suggest that each feature can be selected by attention despite it being internally generated. These findings suggest theories of the brain mechanisms of synaesthesia need to incorporate a broader neural network underpinning multiple visual features, perceptual knowledge, and feature integration, rather than solely focussing on colour-sensitive areas.


Assuntos
Percepção Auditiva/fisiologia , Percepção de Cores/fisiologia , Transtornos da Percepção/psicologia , Percepção Visual/fisiologia , Estimulação Acústica , Feminino , Fixação Ocular , Percepção de Forma/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Música/psicologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Reprodutibilidade dos Testes , Sinestesia , Adulto Jovem
19.
Perception ; 41(3): 339-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808586

RESUMO

The brain constantly integrates incoming signals across the senses to form a cohesive view of the world. Most studies on multisensory integration concern the roles of spatial and temporal parameters. However, recent findings suggest cross-modal correspondences (eg high-pitched sounds associated with bright, small objects located high up) also affect multisensory integration. Here, we focus on the association between auditory pitch and spatial location. Surprisingly little is known about the cognitive and perceptual roots of this phenomenon, despite its long use in ergonomic design. In a series of experiments, we explore how this cross-modal mapping affects the allocation of attention with an attentional cuing paradigm. Our results demonstrate that high and low tones induce attention shifts to upper or lower locations, depending on pitch height. Furthermore, this pitch-induced cuing effect is susceptible to contextual manipulations and volitional control. These findings suggest the cross-modal interaction between pitch and location originates from an attentional level rather than from response mapping alone. The flexible contextual mapping between pitch and location, as well as its susceptibility to top-down control, suggests the pitch-induced cuing effect is primarily mediated by cognitive processes after initial sensory encoding and occurs at a relatively late stage of voluntary attention orienting.


Assuntos
Atenção/fisiologia , Orientação/fisiologia , Percepção da Altura Sonora/fisiologia , Percepção Espacial/fisiologia , Adulto , Análise de Variância , Sinais (Psicologia) , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Estudantes/psicologia , Adulto Jovem
20.
Cortex ; 48(8): 1043-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21889134

RESUMO

Previous research found that quantitative information labelled on target objects of grasping movement modulates grip apertures. While the interaction between numerical cognition and sensorimotor control may reflect a general representation of magnitude underpinned by the parietal cortex, the nature of this embodied cognitive processing remains unclear. In the present study, we examined whether the numerical effects on grip aperture can be flexibly modulated by the relative magnitude between numbers under a context, which suggests a trial-by-trial comparison mechanism to underlie this effect. The participants performed visual open-loop grasping towards one of two adjacent objects that were of the same physical size but labelled with different Arabic digits. Analysis of participants' grip apertures revealed a numerical size-contrast effect, in which the same numerical label (i.e., 5) led to larger grip apertures when it was accompanied by a smaller number (i.e., 2) than by a larger number (i.e., 8). The corrected grip aperture over the time course of movement showed that the numerical size-contrast effect remained significant throughout the grasping movement, despite a trend of gradual dissipation. Our findings demonstrated that interactions between number and action critically depend on the size-contrast of magnitude information in the context. Such a size-contrast effect might result from a general system, which is sensitive to relative magnitude, for different quantity domains. Alternatively, the magnitude representations of numbers and action might be processed separately and interact at a later stage of motor programming.


Assuntos
Força da Mão/fisiologia , Movimento/fisiologia , Percepção de Tamanho/fisiologia , Encéfalo/fisiologia , Mãos/fisiologia , Humanos , Desempenho Psicomotor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...