Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 300(2): 105637, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199564

RESUMO

Life adapts to daily environmental changes through circadian rhythms, exhibiting spontaneous oscillations of biological processes. These daily functional oscillations must match the metabolic requirements responding to the time of the day. We focus on the molecular mechanism of how the circadian clock regulates glucose, the primary resource for energy production and other biosynthetic pathways. The complex regulation of the circadian rhythm includes many proteins that control this process at the transcriptional and translational levels and by protein-protein interactions. We have investigated the action of one of these proteins, cryptochrome (CRY), whose elevated mRNA and protein levels repress the function of an activator in the transcription-translation feedback loop, and this activator causes elevated Cry1 mRNA. We used a genome-edited cell line model to investigate downstream genes affected explicitly by the repressor CRY. We found that CRY can repress glycolytic genes, particularly that of the gatekeeper, pyruvate dehydrogenase kinase 1 (Pdk1), decreasing lactate accumulation and glucose utilization. CRY1-mediated decrease of Pdk1 expression can also be observed in a breast cancer cell line MDA-MB-231, whose glycolysis is associated with Pdk1 expression. We also found that exogenous expression of CRY1 in the MDA-MB-231 decreases glucose usage and growth rate. Furthermore, reduced CRY1 levels and the increased phosphorylation of PDK1 substrate were observed when cells were grown in suspension compared to cells grown in adhesion. Our data supports a model that the transcription-translation feedback loop can regulate the glucose metabolic pathway through Pdk1 gene expression according to the time of the day.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Criptocromos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Linhagem Celular , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , RNA Mensageiro/genética , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
3.
PLoS Genet ; 18(9): e1010426, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155646

RESUMO

Nucleotide excision repair is the primary repair mechanism that removes UV-induced DNA lesions in placentals. Unrepaired UV-induced lesions could result in mutations during DNA replication. Although the mutagenesis of pyrimidine dimers is reasonably well understood, the direct effects of replication fork progression on nucleotide excision repair are yet to be clarified. Here, we applied Damage-seq and XR-seq techniques and generated replication maps in synchronized UV-treated HeLa cells. The results suggest that ongoing replication stimulates local repair in both early and late replication domains. Additionally, it was revealed that lesions on lagging strand templates are repaired slower in late replication domains, which is probably due to the imbalanced sequence context. Asymmetric relative repair is in line with the strand bias of melanoma mutations, suggesting a role of exogenous damage, repair, and replication in mutational strand asymmetry.


Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Células HeLa , Humanos , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
4.
Front Neurosci ; 14: 616802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381013

RESUMO

The transcription-translation feedback loop (TTFL) is the core mechanism of the circadian rhythm. In mammalian cells, CLOCK-BMAL1 proteins activate the downstream genes by binding on the E-box sequence of the clock-controlled genes. Among these gene products, CRY1, CRY2, PER1, PER2, NR1D1, and NR1D2 can regulate the CLOCK-BMAL1-mediated transcription to form the feedback loop. However, the detailed mechanism of the TTFL is unclear because of the complicated inter-regulation of these proteins. Here, we generated a cell line lacking CRY1, CRY2, PER1, PER2, NR1D1, and NR1D2 (Cry/Per/Nr1d_KO) to study TTFL. We compared the Dbp transcription after serum-shock and dexamethasone-shock between Cry/Per/Nr1d_KO cells and cells expressing endogenous CRY (Per/Nr1d_KO) or NR1D (Cry/Per_KO). Furthermore, we found that CRY1-mediated repression of Dbp could persist more than 24 h in the absence of other proteins in the negative limb of the TTFL. Our Cry/Per/Nr1d_KO cells is a suitable system for the studying of differential roles of CRY, PER, and NR1D in the TTFL.

5.
FEBS Lett ; 594(2): 301-316, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541584

RESUMO

Protein arginine methyltransferase 1 (PRMT1) stimulates erythroid differentiation, but the signaling events upstream are yet to be identified. Ca2+ plays crucial roles during erythroid differentiation. Here, we show that Ca2+ enhances methylation during induced erythroid differentiation and that Ca2+ directly upregulates the catalytic activity of recombinant PRMT1 by increasing Vmax toward the substrate heterogeneous nuclear ribonucleoprotein A2. We demonstrate that PRMT1 is essential and responsible for the effect of Ca2+ on differentiation. Depletion of Ca2+ suppresses PRMT1-mediated activation of p38α and p38α-stimulated differentiation. Furthermore, Ca2+ stimulates methylation of p38α by PRMT1. This study uncovers a novel regulatory mechanism for PRMT1 by Ca2+ and identifies the PRMT1/p38α axis as an intracellular mediator of Ca2+ signaling during erythroid differentiation.


Assuntos
Diferenciação Celular/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Ribonucleoproteínas/genética , Arginina/genética , Cálcio/metabolismo , Metilação de DNA/genética , Células Eritroides/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/genética , Transdução de Sinais/genética
6.
Cell Mol Life Sci ; 75(24): 4629-4641, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30264181

RESUMO

Two types of vertebrate cryptochromes (Crys) are currently recognized. Type 2 Crys function in the molecular circadian clock as light-independent transcriptional repressors. Type 4 Crys are a newly discovered group with unknown function, although they are flavoproteins, and therefore, may function as photoreceptors. It has been postulated that Crys function in light-dependent magnetoreception, which is thought to contribute towards homing and migratory behaviors. Here we have cloned and annotated the full-length pigeon ClCry1, ClCry2, and ClCry4 genes, and characterized the full-length proteins and several site-directed mutants to investigate the roles of these proteins. ClCry1 and ClCry2 are phylogenetically grouped as Type 2 Crys and thus are expected to be core components of the pigeon circadian clock. Interestingly, we find that ClCry4 is properly annotated as a Type 4 Cry. It appears that many birds possess a Type 4 Cry which, as in pigeon, is misannotated. Like the Type 2 Crys, ClCry4 is widespread in pigeon tissues. However, unlike the Type 2 Crys, ClCry4 is cytosolic, and purified ClCry4 possesses FAD cofactor, which confers characteristic UV-Vis spectra as well as two photochemical activities. We find that ClCry4 undergoes light-dependent conformational change, which is a property of insect Type 1 Crys involved in the insect-specific pathway of photoentrainment of the biological clock. ClCry4 can also be photochemically reduced by a mechanism common to all FAD-containing Cry family members, and this mechanism is postulated to be influenced by the geomagnetic field. Thus pigeon Crys control circadian behavior and may also have photosensory function.


Assuntos
Proteínas Aviárias/genética , Columbidae/genética , Criptocromos/genética , Animais , Proteínas Aviárias/análise , Proteínas Aviárias/metabolismo , Ritmo Circadiano , Clonagem Molecular , Columbidae/fisiologia , Criptocromos/análise , Criptocromos/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Luz , Oxirredução , Filogenia , Conformação Proteica
7.
Proc Natl Acad Sci U S A ; 115(21): E4777-E4785, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735688

RESUMO

Cisplatin is a major cancer chemotherapeutic drug. It kills cancer cells by damaging their DNA, mainly in the form of Pt-d(GpG) diadducts. However, it also has serious side effects, including nephrotoxicity and hepatotoxicity that limit its usefulness. Chronotherapy is taking circadian time into account during therapy to improve the therapeutic index, by improving efficacy and/or limiting toxicity. To this end, we tested the impact of clock time on excision repair of cisplatin-induced DNA damage at single-nucleotide resolution across the genome in mouse kidney and liver. We found that genome repair is controlled by two circadian programs. Repair of the transcribed strand (TS) of active, circadian-controlled genes is dictated by each gene's phase of transcription, which falls across the circadian cycle with prominent peaks at dawn and dusk. In contrast, repair of the nontranscribed strand (NTS) of all genes, repair of intergenic DNA, and global repair overall peaks at Zeitgeber time ZT08, as basal repair capacity, which is controlled by the circadian clock, peaks at this circadian time. Consequently, the TS and NTS of many genes are repaired out of phase. As most cancers are thought to have defective circadian rhythms, these results suggest that future research on timed dosage of cisplatin could potentially reduce damage to healthy tissue and improve its therapeutic index.


Assuntos
Antineoplásicos/farmacologia , Ritmo Circadiano/genética , Cisplatino/farmacologia , Adutos de DNA/farmacologia , Dano ao DNA , Reparo do DNA , Genoma Humano , Neoplasias/genética , Animais , Ritmo Circadiano/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos
8.
J Biol Chem ; 293(7): 2476-2486, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29282293

RESUMO

In mammalian cells, bulky DNA adducts located in the template but not the coding strand of genes block elongation by RNA polymerase II (RNAPII). The blocked RNAPII targets these transcription-blocking adducts to undergo more rapid excision repair than adducts located elsewhere in the genome. In excision repair, coupled incisions are made in the damaged DNA strand on both sides of the adduct. The fate of RNAPII in the course of this transcription-coupled repair (TCR) pathway is unclear. To address the fate of RNAPII, we used methods that control transcription to initiate a discrete "wave" of elongation complexes. Analyzing genome-wide transcription and repair by next-generation sequencing, we identified locations of elongation complexes and transcription-repair coupling events in genes throughout the genome. Using UV-exposed human skin fibroblasts, we found that, at the dose used, a single wave of elongation complexes was blocked within the first 25 kb of genes. TCR occurred where the elongation complexes were blocked, and repair was associated with the dissociation of these complexes. These results indicate that individual elongation complexes do not engage in multiple rounds of TCR with successive lesions. Our results are consistent with a model in which RNAPII is dissociated after the dual incision of the transcription-blocking lesion, perhaps by Cockayne syndrome group B translocase, or during the synthesis of a repair patch.


Assuntos
Reparo do DNA , DNA/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , DNA/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , RNA Polimerase II/genética , Moldes Genéticos , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
9.
Proc Natl Acad Sci U S A ; 114(26): 6752-6757, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607059

RESUMO

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, is the major cause of lung cancer. BaP forms covalent DNA adducts after metabolic activation and induces mutations. We have developed a method for capturing oligonucleotides carrying bulky base adducts, including UV-induced cyclobutane pyrimidine dimers (CPDs) and BaP diol epoxide-deoxyguanosine (BPDE-dG), which are removed from the genome by nucleotide excision repair. The isolated oligonucleotides are ligated to adaptors, and after damage-specific immunoprecipitation, the adaptor-ligated oligonucleotides are converted to dsDNA with an appropriate translesion DNA synthesis (TLS) polymerase, followed by PCR amplification and next-generation sequencing (NGS) to generate genome-wide repair maps. We have termed this method translesion excision repair-sequencing (tXR-seq). In contrast to our previously described XR-seq method, tXR-seq does not depend on repair/removal of the damage in the excised oligonucleotides, and thus it is applicable to essentially all DNA damages processed by nucleotide excision repair. Here we present the excision repair maps for CPDs and BPDE-dG adducts generated by tXR-Seq for the human genome. In addition, we report the sequence specificity of BPDE-dG excision repair using tXR-seq.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Fumar Cigarros/genética , Reparo do DNA , Genoma Humano , Estudo de Associação Genômica Ampla , Linhagem Celular , Fumar Cigarros/efeitos adversos , Humanos
10.
Proc Natl Acad Sci U S A ; 114(11): E2116-E2125, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28167766

RESUMO

We used high-throughput sequencing of short, cyclobutane pyrimidine dimer-containing ssDNA oligos generated during repair of UV-induced damage to study that process at both mechanistic and systemic levels in Escherichia coli Numerous important insights on DNA repair were obtained, bringing clarity to the respective roles of UvrD helicase and Mfd translocase in repair of UV-induced damage. Mechanistically, experiments showed that the predominant role of UvrD in vivo is to unwind the excised 13-mer from dsDNA and that mutation of uvrD results in remarkable protection of that oligo from exonuclease activity as it remains hybridized to the dsDNA. Genome-wide analysis of the transcribed strand/nontranscribed strand (TS/NTS) repair ratio demonstrated that deletion of mfd globally shifts the distribution of TS/NTS ratios downward by a factor of about 2 on average for the most highly transcribed genes. Even for the least transcribed genes, Mfd played a role in preferential repair of the transcribed strand. On the other hand, mutation of uvrD, if anything, slightly pushed the distribution of TS/NTS ratios to higher ratios. These results indicate that Mfd is the transcription repair-coupling factor whereas UvrD plays a role in excision repair by aiding the catalytic turnover of excision repair proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Transcrição Gênica , Raios Ultravioleta
11.
Proc Natl Acad Sci U S A ; 113(41): E6072-E6079, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688755

RESUMO

The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)-brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cryptochrome (CRY) and Period (PER) proteins function as repressors. PER represses by displacing CLOCK-BMAL1 from promoters in a CRY-dependent manner. Interestingly, genes with complex promoters may either be repressed or de-repressed by PER, depending on the particular promoter regulatory elements. Here, using mouse cell lines with defined knockout mutations in clock genes, RNA-seq, ChIP-seq, and reporter gene assays coupled with measurements of DNA-protein interactions in nuclear extracts, we elucidate the dual functions of PER as repressor and de-repressor in a context-dependent manner.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Regulação da Expressão Gênica , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Fatores de Transcrição ARNTL/genética , Transporte Ativo do Núcleo Celular , Alelos , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Linhagem Celular , Elementos E-Box , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Loci Gênicos , Camundongos , Modelos Biológicos , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Biossíntese de Proteínas , Transativadores/metabolismo
12.
Biochemistry ; 54(2): 110-23, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25302769

RESUMO

The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock-DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs.


Assuntos
Antineoplásicos/administração & dosagem , Relógios Circadianos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Cronofarmacoterapia , Humanos , Neoplasias/epidemiologia , Neoplasias/metabolismo , Fatores de Risco
13.
Genes Dev ; 28(18): 1989-98, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25228643

RESUMO

The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK-BMAL1 with a periodicity of ∼ 24 h. In this model, the mechanistic roles of CRY and PER are unclear. Here, we used a controlled targeting system to introduce CRY1 or PER2 into the nuclei of mouse cells with defined circadian genotypes to characterize the functions of CRY and PER. Our data show that CRY is the primary repressor in the TTFL: It binds to CLOCK-BMAL1 at the promoter and inhibits CLOCK-BMAL1-dependent transcription without dissociating the complex ("blocking"-type repression). PER alone has no effect on CLOCK-BMAL1-activated transcription. However, in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK-BMAL1 from the promoter ("displacement"-type repression). In light of these findings, we propose a new model for the mammalian circadian clock in which the negative arm of the TTFL proceeds by two different mechanisms during the circadian cycle.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Transporte Ativo do Núcleo Celular , Animais , Proteínas CLOCK/genética , Linhagem Celular , Relógios Circadianos/genética , Criptocromos/genética , Camundongos , Complexos Multiproteicos , Mutação , Proteínas Circadianas Period/genética , Estrutura Terciária de Proteína
14.
Nucleic Acids Res ; 42(15): 9908-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25104022

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.


Assuntos
Apoptose , Arginina/metabolismo , Dano ao DNA , Ribonucleoproteínas/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Etoposídeo/farmacologia , Etoposídeo/toxicidade , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Metilação/efeitos dos fármacos , Mutação , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/química , Proteína Quinase C-delta/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética
15.
J Biol Chem ; 289(8): 5013-24, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24385426

RESUMO

The mammalian circadian clock is a molecular oscillator composed of a feedback loop that involves transcriptional activators CLOCK and BMAL1, and repressors Cryptochrome (CRY) and Period (PER). Here we show that a direct CLOCK·BMAL1 target gene, Gm129, is a novel regulator of the feedback loop. ChIP analysis revealed that the CLOCK·BMAL1·CRY1 complex strongly occupies the promoter region of Gm129. Both mRNA and protein levels of GM129 exhibit high amplitude circadian oscillations in mouse liver, and Gm129 gene encodes a nuclear-localized protein that directly interacts with BMAL1 and represses CLOCK·BMAL1 activity. In vitro and in vivo protein-DNA interaction results demonstrate that, like CRY1, GM129 functions as a repressor by binding to the CLOCK·BMAL1 complex on DNA. Although Gm129(-/-) or Cry1(-/-) Gm129(-/-) mice retain a robust circadian rhythm, the peaks of Nr1d1 and Dbp mRNAs in liver exhibit a significant phase delay compared with control. Our results suggest that, in addition to CRYs and PERs, the GM129 protein contributes to the transcriptional feedback loop by modulating CLOCK·BMAL1 activity as a transcriptional repressor.


Assuntos
Relógios Circadianos/genética , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Proteínas CLOCK/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Criptocromos/metabolismo , DNA/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
16.
J Biol Chem ; 288(32): 23244-51, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23833191

RESUMO

Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Criptocromos/biossíntese , Dano ao DNA , Expressão Gênica , Luz , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Criptocromos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Electrophoresis ; 33(3): 451-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22228245

RESUMO

Src, a nonreceptor tyrosine kinase, was the first oncogene identified from an oncogenic virus. Mechanistic studies of Src-induced transformations aid in understanding the pathologic processes underlying tumorigenesis and may provide new strategies for cancer therapy. Although several pathways and protein modifications are reportedly involved in Src-induced transformation, the detailed mechanisms of their regulation remain unclear. Protein methylation is an important PTM that is widely involved in cellular physiology. In this study, we determined if protein methylation was involved in Src activation and which methylated proteins were associated with this activity. Using in vitro methylation and 2-DE analysis of viral Src (v-Src)-transformed rat kidney epithelial cells (RK3E), several known and novel methylated proteins were identified based on their changes in methylation signal intensity upon transformation. Among these, elongation factor 2 (EF-2), heterogeneous nuclear ribonucleoprotein K (hnRNP K), and ß-tubulin protein expressions remained unchanged, indicating that their altered methylation levels were due to Src activation. In addition, the altered expression of ß-actin, vimentin, and protein phosphatase 2, catalytic subunit (PPP2C) as well as protein phosphatase 2, catalytic subunit methylation were also confirmed in RK3E cells transformed with a human oncogenic Src mutant (Src531), supporting their association with Src-induced transformation in human cancer. Together, we showed putative involvement of protein methylation in Src activation and our identification of methylated proteins provides important targets for extensively studying Src-induced transformations.


Assuntos
Transformação Celular Neoplásica/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteoma/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Eletroforese em Gel Bidimensional , Humanos , Metilação , Proteômica/métodos , Ratos , Quinases da Família src/genética
18.
Electrophoresis ; 31(23-24): 3834-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21080372

RESUMO

Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), plays crucial roles in a variety of cellular processes. Mammalian PRMT1 exists in a large protein complex in cells, which has been implied in modulating the regulatory and catalytic properties of this enzyme. Establishment of a mammalian comparative approach will help to identify putative substrates of PRMT1 in an authentic condition. Here, we showed that ectopically expressed PRMT1 in mammalian HEK293 cells not only exhibited catalytic properties comparable to the endogenous enzyme but also existed in a functional complex together with endogenous PRMT1 and thus functioned as an endogenous counterpart. In addition, the measured methylation level of cellular proteins using a tritium-labeled methyl donor was accordingly enhanced upon ectopic expression of PRMT1. Subsequent proteomic analysis with such PRMT1-expressing cells allowed us to identify several known and putative methylated proteins. In vitro methylation of selected proteins, eukaryotic translation initiation factor 4A-I and vimentin, by cellular PRMT1 was shown. Together, we have demonstrated the functional equivalence of ectopically expressed PRMT1 in HEK293 cells and its application to systematically identify the substrate proteins in a mammalian cell context.


Assuntos
Arginina/metabolismo , Imunoprecipitação/métodos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteômica/métodos , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Western Blotting , Eletroforese em Gel Bidimensional , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/metabolismo , Células HEK293 , Hemaglutininas/química , Hemaglutininas/genética , Hemaglutininas/metabolismo , Humanos , Metilação , Dados de Sequência Molecular , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Espectrometria de Massas em Tandem , Vimentina/química , Vimentina/metabolismo
19.
Proteomics ; 10(13): 2429-43, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20405472

RESUMO

Although accelerated atherosclerosis and arteriosclerosis are the main causes of cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients, the molecular pathogenesis remains largely obscure. Our study of the aortic function in a typical CKD model of subtotal nephrectomy (SNX) rats demonstrated phenotypes that resemble CKD patients with aortic stiffness. The 2-DE analysis of rat aortas followed by MS identified 29 up-regulated and 53 down-regulated proteins in SNX rats. Further Western blot and immunohistochemistry analyses validated the decreased HSP27 and increased milk fat globule epidermal growth factor-8 (MFG-E8) in SNX rats. Functional classification of differential protein profiles using KOGnitor revealed that the two major categories involved in aortic stiffness are posttranslational modification, protein turnover, chaperones (23%) and cytoskeleton (21%). Ingenuity Pathway Analysis highlighted cellular assembly and organization, and cardiovascular system development and function as the two most relevant pathways. Among the identified proteins, the clinical significance of the secreted protein MFG-E8 was confirmed in 50 CKD patients, showing that increased serum MFG-E8 level is positively related to aortic stiffness and renal function impairment. Drug interventions with an inhibitor of the angiotensin converting enzyme, enalapril, in SNX rats improved aortic stiffness and decreased MFG-E8 depositions. Together, our studies provide a repertoire of potential biomarkers related to the aortic stiffness in CKD.


Assuntos
Aorta/química , Nefrectomia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Antígenos de Superfície , Aorta/efeitos dos fármacos , Modelos Animais de Doenças , Enalapril/farmacologia , Proteínas de Choque Térmico HSP27/análise , Humanos , Nefropatias/patologia , Nefropatias/fisiopatologia , Masculino , Proteínas do Leite/análise , Proteômica , Ratos , Ratos Sprague-Dawley
20.
Protein J ; 26(2): 87-93, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17191129

RESUMO

Protein methylation is one of the most important post-translational modifications that contribute to the diversity and complexity of proteome. Here we report the study of in vitro methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) with protein arginine methyltransferase 1 (PRMT1), as an enzyme, and S-adenosyl-L-methionine (SAM), as a methyl donor. The mass analysis of tryptic peptides of hnRNP K before and after methylation reveals the addition of four methyl groups in the residues 288-303. Tandem mass-spectrometric analysis of this peptide shows that both Arg296 and Arg299 are dimethylated. In addition, fragmentation analysis of such methylated arginines illustrate that they are both asymmetric dimethylarginines. Since Arg296 and Arg299 are located near the SH3-binding domains of hnRNP K, such methylation has the potential in regulating the interaction of hnRNP K with Src protein family. Our results provide crucial information for further functional study of hnRNP K methylation.


Assuntos
Arginina/química , Arginina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Humanos , Metilação , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...