Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 5: 10084, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25997917

RESUMO

Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterbium-based laser amplifiers (delivering 180-fs, 1030-nm pulses). We show theoretically that this requires a three-colour field composed of the fundamental and its second harmonic as well as a lower-frequency auxiliary component. We present pulse characterization measurements of such auxiliary pulses generated directly by white-light seeded OPA with the required significantly shorter pulse duration than that of the fundamental. This, combined with our recent experimental results on three-colour waveform synthesis, proves that the theoretically considered multi-colour drivers for IAP generation can be realized with existing high-power laser technology. The high-energy driver pulses, combined with the strongly enhanced single-atom-level conversion efficiency we observe in our calculations, thus make multi-colour drivers prime candidates for the development of unprecedented high-energy IAP sources in the near future.

2.
Opt Express ; 18(7): 6853-62, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389704

RESUMO

We report observations and analysis of high harmonic generation driven by a superposition of fields at 1290 nm and 780 nm. These fields are not commensurate in frequency and the superposition leads to an increase in the yield of the mid-plateau harmonics of more than two orders of magnitude compared to using the 1290 nm field alone. Significant extension of the cut-off photon energy is seen even by adding only a small amount of the 780 nm field. These observations are explained by calculations performed in the strong field approximation. Most importantly we find that enhancement is found to arise as a consequence of both increased ionization in the sum-field and modification of the electron trajectories leading to an earlier return time. The enhanced yield even when using modest intensity fields of 5 x 10(13) Wcm(-2) is extended to the 80 eV range and is a promising route to provide a greater photon number for applications in XUV imaging and time-resolved experiments at a high repetition rate.


Assuntos
Óptica e Fotônica , Óxido de Alumínio/química , Campos Eletromagnéticos , Elétrons , Desenho de Equipamento , Íons , Lasers , Dinâmica não Linear , Distribuição Normal , Fótons , Física/métodos , Titânio/química
3.
Phys Rev Lett ; 102(6): 063003, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19257585

RESUMO

We present the perfect waveform which, during a strong field interaction, generates the maximum possible electron recollision energy for any given oscillation period, over 3 times as high as that for a pure sinusoidal wave. This ideal waveform has the form of a linear ramp with a dc offset. A genetic algorithm was employed to find an optimized practically achievable waveform composed of a longer wavelength field, to provide the offset, in addition to higher frequency components. This second waveform is found to be capable of generating electron recollision energies as high as those for the perfect waveform while retaining the high recollision amplitudes of a pure sinusoidal wave. Calculations of high harmonic generation demonstrate this enhancement, by increasing the cutoff energy by a factor of 2.5 while maintaining the harmonic yield, providing an enhanced tool for attosecond science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...