Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(55): 117829-117845, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37875756

RESUMO

Global energy demand has drastically increased due to urbanization and industrialization; thus, developing alternative renewable energy sources is urgently required. In the present work, upgrading the pyrolytic oil (PO) derived from fresh palm fruit was performed by the catalytic in situ hydrodeoxygenation (in situ HDO) process. Preparation of nickel-doped HZSM-5 zeolite (SiO2/Al2O3 = 40) was achieved by incipient wetness impregnation techniques using different weight percents of nickel dopant into HZSM-5. Nickel-doped HZSM-5 zeolite (Ni-HZSM-5) was further subjected to chemical reduction for 5 h in the oxygen-free environment (10% H2 and 90% N2) at 550 °C. The structural properties showed a potential reduction of NiO-HZSM-5 to Ni-HZSM-5, enhancing the catalytic potential. The morphological characterizations showed spherical-shaped Ni agglomerated onto HZSM-5. Acidity and oxygen contents in the pyrolytic oil were achieved by catalyst-aided HDO process at 220 °C for 6 h using methanol as a hydrogen donor. The catalytically upgraded pyrolytic oil (UPO) was analyzed for density, HHV, CHNO, and TGA. The best upgrading oil was distilled following ASTM D86 to separate gasoline, kerosene, and diesel. The acidity, density, HHV, and viscosity were measured before and after the upgradation processes. The results showed the potential impact of Ni with 10% doped on HZSM-5 on HDO reaction and illustrated the lowest oxygen content in upgraded pyrolytic oil products. Considerable decrease in viscosity and density level indicated that in situ HDO not only reduced oxygen content but also cracked pyrolytic oil to small molecules. The distilled product of upgrading oil was higher than pyrolytic oil by approximately 15% in volume. The viscosity, density, and HHV were under standard specifications of kerosene and diesel, except for acidity. However, the acidity was reduced by over 60% compared with raw material.


Assuntos
Níquel , Zeolitas , Níquel/química , Querosene , Dióxido de Silício , Oxigênio , Catálise , Biocombustíveis
2.
Inorg Chem ; 62(31): 12345-12355, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37477874

RESUMO

Development of highly efficient, earth-abundant, and stable bifunctional electrocatalysts is pivotal for designing viable next-generation metal-air batteries. Cobalt-based phosphates provide a treasure house to design electrocatalysts, with a wide range of cation substitutions to further enhance their electrocatalytic activity. In particular, phosphates with distorted geometry show favorable binding efficiency toward water molecules with low overpotential. In the present work, zinc-substituted cobalt phosphate ZnCo2(PO4)2 was investigated. Its crystal structure was solved to a monoclinic framework built with CoO6 octahedra and distorted CoO5/ZnO5 trigonal bipyramid leading to efficient bifunctional electrocatalytic activity. It offers robust structural stability with onset potential values of 0.87 V (vs reversible hydrogen electrode (RHE)) and 1.50 V (vs RHE) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, respectively, comparable to the precious metal catalysts. The origin and stability of the bifunctional activity were probed by combining ex situ diffraction and electron microscopy corroborated by ab initio calculations. Overall, zinc-substituted cobalt phosphate [ZnCo2(PO4)2] forms a potential bifunctional electrocatalyst with tunable local cobalt coordination that can be harnessed for metal-air batteries.

3.
Small ; 19(39): e2301121, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271929

RESUMO

Optimizing catalysts for competitive photocatalytic reactions demand individually tailored band structure as well as intertwined interactions of light absorption, reaction activity, mass, and charge transport.  Here, a nanoparticulate host-guest structure is rationally designed that can exclusively fulfil and ideally control the aforestated uncompromising requisites for catalytic reactions. The all-inclusive model catalyst consists of porous Co3 O4 host and Znx Cd1- x S guest with controllable physicochemical properties enabled by self-assembled hybrid structure and continuously amenable band gap. The effective porous topology nanoassembly, both at the exterior and the interior pores of a porous metal-organic framework (MOF), maximizes spatially immobilized semiconductor nanoparticles toward high utilization of particulate heterojunctions for vital charge and reactant transfer. In conjunction, the zinc constituent band engineering is found to regulate the light/molecules absorption, band structure, and specific reaction intermediates energy to attain high photocatalytic CO2 reduction selectivity. The optimal catalyst exhibits a H2 -generation rate up to 6720 µmol g-1 h-1 and a CO production rate of 19.3 µmol g-1 h-1 . These findings provide insight into the design of discrete host-guest MOF-semiconductor hybrid system with readily modulated band structures and well-constructed heterojunctions for selective solar-to-chemical conversion.

4.
Environ Sci Pollut Res Int ; 30(39): 90298-90317, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36357757

RESUMO

Visible-light active La-Fe-SrTiO3 (La0.01Sr0.99Fe0.01Ti0.99O3) photocatalysts were synthesized via a dynamic hydrothermal route under different NaOH concentrations (2, 3, 4, 5, and 6 M). The results showed that altering NaOH concentrations changed the physicochemical characteristics of the materials. Namely, the decrease in particle size was observed when the NaOH levels were increased. The specific surface area of the photocatalysts changed with an increased concentration of NaOH, and the maximum value was 17.10 m2/g in 5 M of NaOH. The crystal structure of all prepared samples remained unaffected when altered the NaOH concentration or when incorporated La and Fe in the lattice of SrTiO3. Namely, all samples synthesized under various NaOH concentrations crystallized and maintained in the standard cubic perovskite structure of SrTiO3. The increased NaOH concentration slightly altered the absorption wavelength towards a longer wavelength region. The La atom, replacing some Sr2+ in the structure of modified SrTiO3, was confirmed to be in the La3+ valence state. Simultaneously, Fe atoms demonstrating oxidation states of Fe3+ can also be incorporated into the SrTiO3 network. The photocatalytic degradation of ciprofloxacin antibiotic revealed that the highest performance was approximately 75% within 9 h over the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared at 5 M of NaOH via the dynamic hydrothermal process. Meanwhile, this photocatalyst also displayed greater activity than the pristine SrTiO3, the single-doped samples (SrFe0.01Ti0.99O3 and La0.01Sr0.99TiO3), and the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared through a static hydrothermal technique under the same synthesis condition.


Assuntos
Luz , Óxidos , Hidróxido de Sódio , Catálise , Óxidos/química
5.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159819

RESUMO

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

6.
Chemistry ; 26(72): 17399-17404, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32816364

RESUMO

Deposition of redox-active metal-organic frameworks (MOFs) as thin films on conductive substrates is of great importance to improve their electrochemical performance and durability. In this work, a series of metalloporphyrinic MOF crystals was successfully deposited as thin films on carbon fiber paper (CFP) substrates, which is an alternative to rigid glass substrates. The specific dimensions of the obtained films could be adjusted easily by simple cutting. Metalloporphyrinic MOFs on CFP with different active metal species have been employed for electrochemical conversion of the carcinogenic nitrite into the less toxic nitrate. The MOFs on CFP exhibit remarkable improvement in terms of the electrocatalytic performance and reusability compared with the electrodes prepared from MOF powder. The contribution from metal species of the porphyrin units and reaction mechanisms was elucidated based on the findings from X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption near edge structure (XANES) measured during the electrochemical reaction. By integrating the redox-active property of metalloporphyrinic MOFs and high conductivity of CFP, MOF thin films on CFP provided a significant improvement of electrocatalytic performance to detoxify the carcinogenic nitrite with good stability.

7.
Colloids Surf B Biointerfaces ; 156: 254-261, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538196

RESUMO

At present, strategies to disperse hydrophobic molecules in water without altering their chemical structures include conventional surfactant-based micellar and vesicular systems, encapsulation into water dispersible polymeric nanoparticles, and loading onto the surface of various metal nanoparticles. Here, we report a simple and low cost platform to incorporate hydrophobic molecules into a stable water dispersible nanostructure that can significantly increase the stability of the encapsulated materials. The platform is based on the incorporation of hydrophobic molecules into the self-assembled complex of gadolinium ion (Gd3+), sodium dodecyl sulfate (SDS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) called GdSH. After being incorporated, the two model hydrophobic dyes, curcumin and curcumin borondifluoride show approximately 50% and 30% improved stability, respectively. Investigation of the self-assembled 10-14 multilayered 60nm spheres with inter-layer distances of 4.25nm indicates coordination of SDS and HEPES with Gd3+. Incorporation of the hydrophobic molecules into the multilayered spheres results in reduction of the interlayer distance of the multilayer spheres to 4.17nm, suggesting enhanced packing of the hydrophobic chain of SDS and HEPES around the Gd3+. The incorporation of the two curcuminoids into the self-assembled complex also causes an increase in fluorescence quantum yield of the two dyes, thus suggesting spatial confinement of the packed dye molecules. The better cellular uptake of the nanoparticles is responsible for the expected enhancement in fluorescence image of the encapsulated materials.


Assuntos
Curcumina/farmacocinética , Gadolínio/farmacocinética , HEPES/farmacocinética , Imagem Óptica , Compostos Organometálicos/farmacocinética , Dodecilsulfato de Sódio/farmacocinética , Linhagem Celular Tumoral , Curcumina/química , Gadolínio/química , HEPES/química , Humanos , Nanopartículas/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Dodecilsulfato de Sódio/química
8.
J Synchrotron Radiat ; 19(Pt 6): 937-43, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23093752

RESUMO

An energy-dispersive X-ray absorption spectroscopy beamline has been constructed at the Synchrotron Light Research Institute, Thailand. The beamline was designed to utilize the synchrotron radiation with photon energies between 2400 and 8000 eV. The horizontal focusing of the bent crystal in the energy-dispersive monochromator offers a small polychromatic focal spot of 1 mm at the sample position. By employing an energy-dispersive scheme, the whole X-ray absorption near-edge structure (XANES) can be obtained simultaneously using a position-sensitive detector with a fastest readout speed of 25 ms. The short data collection time opens a new opportunity for time-resolved X-ray absorption spectroscopy (XAS) experiments such as studies of changes of the electronic structures or the local coordination environments of an atom during a change in thermodynamic conditions. For this purpose, an in situ cell was designed and fabricated for the beamline. Thermal oxidation of TiO(2) was chosen as an in situ experiment example. The structural change of TiO(2) as a function of temperatures was monitored from the change in the measured XAS spectra. The obtained Ti K-edge XANES spectra clearly show the formation of an anatase phase when the temperature was raised to 673 K.

9.
Nanoscale Res Lett ; 7(1): 425, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849756

RESUMO

Ferromagnetism was observed at room temperature in monodisperse CeO2 nanospheres synthesized by hydrothermal treatment of Ce(NO3)3·6H2O using polyvinylpyrrolidone as a surfactant. The structure and morphology of the products were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and field-emission scanning electron microscopy (FE-SEM). The optical properties of the nanospheres were determined using UV and visible spectroscopy and photoluminescence (PL). The valence states of Ce ions were also determined using X-ray absorption near edge spectroscopy. The XRD results indicated that the synthesized samples had a cubic structure with a crystallite size in the range of approximately 9 to 19 nm. FE-SEM micrographs showed that the samples had a spherical morphology with a particle size in the range of approximately 100 to 250 nm. The samples also showed a strong UV absorption and room temperature PL. The emission might be due to charge transfer transitions from the 4f band to the valence band of the oxide. The magnetic properties of the samples were studied using a vibrating sample magnetometer. The samples exhibited room temperature ferromagnetism with a small magnetization of approximately 0.0026 to 0.016 emu/g at 10 kOe. Our results indicate that oxygen vacancies could be involved in the ferromagnetic exchange, and the possible mechanism of formation was discussed based on the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...