Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(10): 106801, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112464

RESUMO

We present a spectroscopic method which utilizes virtual photons to selectively measure the electronic structure of the topmost atomic layer. These virtual photons are created when incident positrons transition from vacuum states to bound surface states on the sample surface and can transfer sufficient energy to excite electrons into the vacuum. The short interaction range of the virtual photons restricts the penetration depth to approximately the Thomas-Fermi screening length. Measurements and analysis of the kinetic energies of the emitted electrons made on a single layer of graphene deposited on Cu and on the clean Cu substrate show that the ejected electrons originate exclusively from the topmost atomic layer. Moreover, we find that the kinetic energies of the emitted electrons reflect the density of states at the surface. These results demonstrate that this technique will be a complementary tool to existing spectroscopic techniques in determining the electronic structure of 2D materials and fragile systems due to the absence of subsurface contributions and probe-induced surface damage.

2.
Sci Rep ; 10(1): 17993, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093505

RESUMO

Oxygen, the third most abundant element in the universe, plays a key role in the chemistry of condensed matter and biological systems. Here, we report evidence for a hitherto unexplored Auger transition in oxides, where a valence band electron fills a vacancy in the 2s state of oxygen, transferring sufficient energy to allow electron emission. We used a beam of positrons with kinetic energies of [Formula: see text] eV to create O 2s holes via matter-antimatter annihilation. This made possible the elimination of the large secondary electron background that has precluded definitive measurements of the low-energy electrons emitted through this process. Our experiments indicate that low-energy electron emission following the Auger decay of O 2s holes from adsorbed oxygen and oxide surfaces are very efficient. Specifically, our results indicate that the low energy electron emission following the Auger decay of O 2s hole is nearly as efficient as electron emission following the relaxation of O 1s holes in [Formula: see text]. This has important implications for the understanding of Auger-stimulated ion desorption, Coulombic decay, photodynamic cancer therapies, and may yield important insights into the radiation-induced reactive sites for corrosion and catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...