Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 113(2): 932-939, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31961438

RESUMO

Soybean aphid, Aphis glycines Matsumura, remains the most economically damaging arthropod pest of soybean in the midwestern United States and southern Canada. Foliar applications of a limited number of insecticide modes of action have been the primary management tactic, and pyrethroid resistance was documented recently with full concentration-response leaf-dip and glass-vial bioassays. Full concentration-response bioassays can be cumbersome, and a more efficient assessment tool was needed. In this study, we implemented a diagnostic-concentration glass-vial bioassay using bifenthrin and λ-cyhalothrin. Bioassays were conducted with field-collected soybean aphid populations to assess the geographic extent and severity of resistance to pyrethroids. In 2017, 10 of 18 and 11 of 21 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. In 2018, 17 of 23 and 13 of 23 field populations tested with bifenthrin and λ-cyhalothrin, respectively, had mean proportion mortalities less than the susceptible laboratory population. Populations collected after reported field failures of a pyrethroid insecticide generally had mean proportion mortalities less than the susceptible laboratory population. In both years, there was a strong correlation between chemistries, which suggests cross-resistance between these insecticides. The diagnostic-concentration glass-vial bioassays reported here will provide the foundation for an insecticide resistance monitoring program with the ability to determine practical levels and geographic extent of insecticide resistance.


Assuntos
Afídeos/efeitos dos fármacos , Inseticidas/farmacologia , Piretrinas , Animais , Bioensaio , Canadá , Resistência a Inseticidas/efeitos dos fármacos , Meio-Oeste dos Estados Unidos , Glycine max/efeitos dos fármacos
2.
Theor Appl Genet ; 127(5): 1251-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705575

RESUMO

Soybean [Glycine max (L.) Merr.] continues to be plagued by the soybean aphid (Aphis glycines Matsumura: SA) in North America. New soybean resistance sources are needed to combat the four identified SA biotypes. The objectives of this study were to determine the inheritance of SA resistance in PI 587732 and to map resistance gene(s). For this study, 323 F2 and 214 F3 plants developed from crossing PI 587732 to two susceptible genotypes were challenged with three SA biotypes and evaluated with genetic markers. Choice tests showed that resistance to SA Biotype 1 in the first F2 population was controlled by a gene in the Rag1 region on chromosome 7, while resistance to SA Biotype 2 in the second population was controlled by a gene in the Rag2 region on chromosome 13. When 134 F3 plants segregating in both the Rag1 and Rag2 regions were tested with a 1:1 mixture of SA Biotypes 1 and 2, the Rag2 region and an interaction between the Rag1 and Rag2 regions were significantly associated with the resistance. Based on the results of the non-choice tests, the resistance gene in the Rag1 region in PI 587732 may be a different allele or gene from Rag1 from Dowling because the PI 587732 gene showed antibiosis type resistance to SA Biotype 2 while Rag1 from Dowling did not. The two SA resistance loci and genetic marker information from this study will be useful in increasing diversity of SA resistance sources and marker-assisted selection for soybean breeding programs.


Assuntos
Afídeos , Genes de Plantas , Glycine max/genética , Animais , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Glycine max/parasitologia
3.
Environ Entomol ; 43(1): 58-68, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24367911

RESUMO

Banded sunflower moth, Cochylis hospes Walsingham, is one of the most destructive seed-feeding insect pests of sunflowers, causing significant economic yield losses in the northern Great Plains. In an attempt to understand host-plant resistance mechanisms for this pest, we field-tested, over several years, the effects of seven sunflower accessions, rated as resistant to C. hospes in previous screening trials, and a susceptible control (Par 1673-2), on the ovipositional preference and larval performance of C. hospes and its larval parasitoids. Of the resistant accessions, PI 494859 was the most preferred for oviposition, receiving a significantly greater number of eggs per head than did the susceptible Par 1673-2 in 2 of 3 yr. However, the numbers of larvae, and consequently the rate of seed infestation, found in PI 494859 heads were significantly lower than those in Par 1673-2 heads over all 3 yr. Female moths laid relatively few eggs on accessions PI 170385, 291403, and 251902, compared with on Par 1673-2, resulting in lower numbers of larvae per head and lower percentages of seed damaged. No association was observed between the concentrations of two diterpenoid alcohols or two diterpenoid acids in sunflower bracts and the numbers of eggs laid on the heads of the accessions. The number of banded sunflower moth larvae and the proportion of seeds damaged were positively correlated with kaurenoic acid concentrations and negatively correlated with kauranol concentrations. A positive association between resistance to larval feeding and parasitism was found in years 2006 and 2008, with resistant accessions having significantly greater proportions of parasitized larvae than did the susceptible Par 1673-2.


Assuntos
Diterpenos/metabolismo , Helianthus/metabolismo , Herbivoria , Mariposas/fisiologia , Oviposição , Animais , Feminino , Topos Floridos/metabolismo , Interações Hospedeiro-Parasita , Larva/parasitologia , Larva/fisiologia , Mariposas/parasitologia , Sementes , Vespas/fisiologia
4.
J Econ Entomol ; 104(4): 1236-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21882688

RESUMO

Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.


Assuntos
Helianthus/parasitologia , Interações Hospedeiro-Parasita , Mariposas/fisiologia , Sementes/parasitologia , Tephritidae/fisiologia , Agricultura/métodos , Animais , Biomassa , North Dakota , Densidade Demográfica , Fatores de Tempo
5.
Artigo em Inglês | MEDLINE | ID: mdl-20580676

RESUMO

Sugarbeet root maggots, Tetanops myopaeformis (Diptera, Ulidiidae), survive more than five years of laboratory cold (6 degrees C) storage as mature third-instar larvae. To quantify energy costs associated with prolonged storage, internal lipids of larvae stored for 1, 2, 3, and 5 years were compared and characterized with those of field-collected diapausing larvae. Internal lipid concentration was highest (21.8% wet wt. and 29.8% dry wt.) in diapausing larvae. Lipids decreased progressively over storage time with greater than 70% reductions for 5-year stored larvae. Thin-layer chromatographic analysis revealed that triacylglycerols (TAGs) were the most predominant class of internal lipids, with trace amounts of diacylglycerols and hydrocarbons also being present. Gas chromatography-mass spectrometry (GC-MS) analyses of TAG fractions identified ten major fatty acids (FAs). The proportion of unsaturated FAs was higher (73 to 78%) than saturated FAs in diapausing and stored larval groups. Palmitoleic acid (16:1) was the predominant FA, constituting 40-50% of total unsaturated FAs with lesser amounts of myristoleic (14:1), oleic (18:1), lauroleic (12:1), gadoleic (20:1), and the saturated FAs, palmitic (16:0), myristic (14:0), lauric (12:0), stearic (18:0), and arachidic (20:0) being detected at much lower concentrations. Characterization of intact TAGs by high performance liquid chromatography and GC-MS revealed the presence of more than 40 TAG constituents. In conclusion, TAGs are utilized as an important energy source for T. myopaeformis larvae during diapause and long-term cold storage with no observed impact of multi-year storage on the TAG composition and distribution of their fatty acids.


Assuntos
Temperatura Baixa , Dípteros/química , Dípteros/fisiologia , Lipídeos/química , Animais , Peso Corporal , Cromatografia Líquida de Alta Pressão , Dípteros/metabolismo , Metabolismo Energético , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Larva/química , Larva/metabolismo , Larva/fisiologia , Fatores de Tempo , Triglicerídeos/análise , Triglicerídeos/metabolismo
6.
J Insect Physiol ; 54(4): 691-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18346755

RESUMO

To test the hypothesis that long-term survival of sugarbeet root maggot in storage is facilitated by larvae undergoing prolonged diapause, respiration and gene expression patterns of field-collected diapausing larvae were compared with those of 1-, 2-, and 5-year laboratory-stored larvae. Additional assessments were made on post-storage survival, emergence, and reproductive fitness of stored larvae. Respirometry, carried out at 5 and 20 degrees C revealed no differences among respiration rates of initially diapausing and long-term stored larvae. A 15 degrees increase in temperature elevated respiration in both diapausing and stored larvae, with levels of CO2 release ranging between 8- and 14-fold higher at 20 degrees C than at 5 degrees C. Similarly, 6-10-fold increases in O2 consumption levels were observed at the higher temperature. A transcript with sequence similarity to the fat body protein 2 (Fbp2) gene was highly expressed in diapausing larvae, and trace levels were expressed in some samples of 1-year stored larvae. However, no expression was detected in 2- and 5-year stored larvae. Survival and emergence studies of stored larvae revealed mixed populations of diapausing (i.e., the 5-17% of larvae that did not pupate) and post-diapausing (62-84% of larvae pupated) insects, with a high incidence of pupation (62%) and emergence (47%), even after 4 years in cold storage. Therefore, extended survival of Tetanops myopaeformis larvae in long-term cold storage is facilitated by two mechanisms, with a majority of larvae in post-diapause quiescence and a smaller fraction in a state of prolonged diapause.


Assuntos
Beta vulgaris , Dípteros/fisiologia , Conservação de Alimentos , Animais , Respiração Celular , Sobrevivência Celular , Temperatura Baixa , Dípteros/genética , Dípteros/crescimento & desenvolvimento , Expressão Gênica , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Oxigênio/metabolismo , Raízes de Plantas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...