Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 136: 103645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428373

RESUMO

DNA polymerases lambda (Polλ) and mu (Polµ) are X-Family polymerases that participate in DNA double-strand break (DSB) repair by the nonhomologous end-joining pathway (NHEJ). Both polymerases direct synthesis from one DSB end, using template derived from a second DSB end. In this way, they promote the NHEJ ligation step and minimize the sequence loss normally associated with this pathway. The two polymerases differ in cognate substrate, as Polλ is preferred when synthesis must be primed from a base-paired DSB end, while Polµ is required when synthesis must be primed from an unpaired DSB end. We generated a Polλ variant (PolλKGET) that retained canonical Polλ activity on a paired end-albeit with reduced incorporation fidelity. We recently discovered that the variant had unexpectedly acquired the activity previously unique to Polµ-synthesis from an unpaired primer terminus. Though the sidechains of the Loop1 region make no contact with the DNA substrate, PolλKGET Loop1 amino acid sequence is surprisingly essential for its unique activity during NHEJ. Taken together, these results underscore that the Loop1 region plays distinct roles in different Family X polymerases.


Assuntos
DNA Polimerase beta , DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mutação com Ganho de Função , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA/metabolismo , Reparo do DNA por Junção de Extremidades
2.
Nat Commun ; 13(1): 3806, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778389

RESUMO

DNA double-strand breaks (DSBs) threaten genomic stability, since their persistence can lead to loss of critical genetic information, chromosomal translocations or rearrangements, and cell death. DSBs can be repaired through the nonhomologous end-joining pathway (NHEJ), which processes and ligates DNA ends efficiently to prevent or minimize sequence loss. Polymerase λ (Polλ), one of the Family X polymerases, fills sequence gaps of DSB substrates with a strict specificity for a base-paired primer terminus. There is little information regarding Polλ's approach to engaging such substrates. We used in vitro polymerization and cell-based NHEJ assays to explore the contributions of conserved loop regions toward DSB substrate specificity and utilization. In addition, we present multiple crystal structures of Polλ in synapsis with varying biologically relevant DSB end configurations, revealing how key structural features and hydrogen bonding networks work in concert to stabilize these tenuous, potentially cytotoxic DNA lesions during NHEJ.


Assuntos
Pareamento Cromossômico , Reparo do DNA por Junção de Extremidades , Quebras de DNA de Cadeia Dupla , Nucleotidiltransferases , Especificidade por Substrato , Sinapses
3.
Nucleic Acids Res ; 47(17): 9410-9422, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31435651

RESUMO

DNA double-strand breaks (DSBs) resulting from reactive oxygen species generated by exposure to UV and ionizing radiation are characterized by clusters of lesions near break sites. Such complex DSBs are repaired slowly, and their persistence can have severe consequences for human health. We have therefore probed DNA break repair containing a template 8-oxo-7,8-dihydro-2'-guanosine (8OG) by Family X Polymerase µ (Pol µ) in steady-state kinetics and cell-based assays. Pol µ tolerates 8OG-containing template DNA substrates, and the filled products can be subsequently ligated by DNA Ligase IV during Nonhomologous end-joining. Furthermore, Pol µ exhibits a strong preference for mutagenic bypass of 8OG by insertion of adenine. Crystal structures reveal that the template 8OG is accommodated in the Pol µ active site with none of the DNA substrate distortions observed for Family X siblings Pols ß or λ. Kinetic characterization of template 8OG bypass indicates that Pol µ inserts adenosine nucleotides with weak sugar selectivity and, given the high cellular concentration of ATP, likely performs its role in repair of complex 8OG-containing DSBs using ribonucleotides.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/genética , Guanosina/análogos & derivados , Trifosfato de Adenosina/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Ligase Dependente de ATP/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/química , Guanosina/genética , Humanos , Mutagênese/efeitos da radiação , Radiação Ionizante , Espécies Reativas de Oxigênio/química , Raios Ultravioleta
4.
Sci Rep ; 6: 21671, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902909

RESUMO

Kluyveromyces lactis hAT-transposase 1 (Kat1) generates hairpin-capped DNA double strand breaks leading to MAT-switching (MATa to MATα). Using purified Kat1, we demonstrate the importance of terminal inverted repeats and subterminal repeats for its endonuclease activity. Kat1 promoted joining of the transposon end into a target DNA molecule in vitro, a biochemical feature that ties Kat1 to transposases. Gas-phase Electrophoretic Mobility Macromolecule analysis revealed that Kat1 can form hexamers when complexed with DNA. Kat1 point mutants were generated in conserved positions to explore structure-function relationships. Mutants of predicted catalytic residues abolished both DNA cleavage and strand-transfer. Interestingly, W576A predicted to be impaired for hairpin formation, was active for DNA cleavage and supported wild type levels of mating-type switching. In contrast, the conserved CXXH motif was critical for hairpin formation because Kat1 C402A/H405A completely blocked hairpinning and switching, but still generated nicks in the DNA. Mutations in the BED zinc-finger domain (C130A/C133A) resulted in an unspecific nuclease activity, presumably due to nonspecific DNA interaction. Kat1 mutants that were defective for cleavage in vitro were also defective for mating-type switching. Collectively, this study reveals Kat1 sharing extensive biochemical similarities with cut and paste transposons despite being domesticated and evolutionary diverged from active transposons.


Assuntos
DNA Fúngico/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Kluyveromyces/genética , Transposases/genética , Motivos de Aminoácidos , Domínio Catalítico , Sequência Conservada , Quebras de DNA de Cadeia Dupla , Clivagem do DNA , Elementos de DNA Transponíveis , DNA Fúngico/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Sequências Repetidas Invertidas , Kluyveromyces/enzimologia , Mutação Puntual , Multimerização Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade , Transposases/metabolismo
5.
PLoS One ; 10(10): e0141154, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488879

RESUMO

Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l-1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13) and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW) and Echioidinin (ED). Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents.


Assuntos
Andrographis/química , Calo Ósseo/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Linhagem Celular , Humanos
6.
Physiol Mol Biol Plants ; 21(3): 417-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26261406

RESUMO

Bixa orellana L. (Bixaceae) is a multipurpose tree grown for the production of commercially important dyes. In the present study, an efficient, reproducible protocol was developed for direct plant regeneration from in vitro derived petiole explants of Bixa orellana L. Murashige and Skoog medium (MS) supplemented with 2-isopentenyl adenine (9.8 µM) and naphthalene acetic acid (10.7 µM) was found to be optimum for production of high frequency of shoot organogenesis. Subculturing of the shoots onto the fresh MS medium containing similar concentrations of 2-iP (9.8 µM) and NAA (10.7 µM) produced elongated shoots. Elongated shoots when placed onto MS medium supplemented with 1.7 µM indole-3-acetic acid and 14.7 µM 2-iP produced optimal rooting. Rooted plantlets were acclimatized and transplanted to the field successfully. Histological investigation revealed the origin of shoot primordia, from sub-epidermal cells of petiole explants. The regeneration protocol developed in this study can be useful for mass in vitro propagation and effective genetic transformation of commercially important edible dye yielding tree species.

7.
Rev. bras. farmacogn ; 25(1): 61-83, Jan-Feb/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-746054

RESUMO

Drug resistance to human infectious diseases caused by pathogens lead to premature deaths through out the world. Plants are sources for wide variety of drugs used for treating various diseases. Systematic screening of medicinal plants for the search of new antimicrobial drug candidates that can inhibit the growth of pathogens or kill with no toxicity to host is being continued by many laboratories. Here we review the phytochemical investigations and biological activities of Meliaceae. The mahogany (Meliaceae) is family of timber trees with rich source for limonoids. So far, amongst the different members of Meliaceae, Azadirachta indica and Melia dubia have been identified as the potential plant systems possessing a vast array of biologically active compounds which are chemically diverse and structurally complex. Despite biological activities on different taxa of Meliaceae have been carried out, the information of antibacterial and antifungal activity is a meager with exception to Azadirachta indica. Together we provide new insights of Meliaceae members demonstrating as a potential source as antimicrobial agents using in vitro studies.

8.
DNA Repair (Amst) ; 24: 37-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25457772

RESUMO

LIG4/Dnl4 is the DNA ligase that (re)joins DNA double-strand breaks (DSBs) via nonhomologous end joining (NHEJ), an activity supported by binding of its tandem BRCT domains to the ligase accessory protein XRCC4/Lif1. We screened a panel of 88 distinct ligase mutants to explore the structure­function relationships of the yeast Dnl4 BRCT domains and inter-BRCT linker in NHEJ. Screen results suggested two distinct classes of BRCT mutations with differential effects on Lif1 interaction as compared to NHEJ completion. Validated constructs confirmed that D800K and GG(868:869)AA mutations, which target the Lif1 binding interface, showed a severely defective Dnl4­Lif1 interaction but a less consistent and often small decrease in NHEJ activity in some assays, as well as nearly normal levels of Dnl4 accumulation at DSBs. In contrast, mutants K742A and KTT(742:744)ATA, which target the ß3-α2 region of the first BRCT domain, substantially decreased NHEJ function commensurate with a large defect in Dnl4 recruitment to DSBs, despite a comparatively greater preservation of the Lif1 interaction. Together, these separation-of-function mutants indicate that Dnl4 BRCT1 supports DSB recruitment and NHEJ in a manner distinct from Lif1 binding and reveal a complexity of Dnl4 BRCT domain functions in support of stable DSB association.


Assuntos
DNA Ligases/genética , Proteínas de Ligação a DNA/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Mutação , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 111(43): 15491-6, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313032

RESUMO

Transposable elements (TEs) have had a major influence on shaping both prokaryotic and eukaryotic genomes, largely through stochastic events following random or near-random insertions. In the mammalian immune system, the recombination activation genes1/2 (Rag1/2) recombinase has evolved from a transposase gene, demonstrating that TEs can be domesticated by the host. In this study, we uncovered a domesticated transposase, Kluyveromyces lactis hobo/Activator/Tam3 (hAT) transposase 1 (Kat1), operating at the fossil imprints of an ancient transposon, that catalyzes the differentiation of cell type. Kat1 induces mating-type switching from mating type a (MATa) to MATα in the yeast K. lactis. Kat1 activates switching by introducing two hairpin-capped DNA double-strand breaks (DSBs) in the MATa1-MATa2 intergenic region, as we demonstrate both in vivo and in vitro. The DSBs stimulate homologous recombination with the cryptic hidden MAT left alpha (HMLα) locus resulting in a switch of the cell type. The sites where Kat1 acts in the MATa locus most likely are ancient remnants of terminal inverted repeats from a long-lost TE. The KAT1 gene is annotated as a pseudogene because it contains two overlapping ORFs. We demonstrate that translation of full-length Kat1 requires a programmed -1 frameshift. The frameshift limited Kat1 activity, because restoring the zero frame causes switching to the MATα genotype. Kat1 also was transcriptionally activated by nutrient limitation via the transcription factor mating type switch 1 (Mts1). A phylogenetic analysis indicated that KAT1 was domesticated specifically in the Kluyveromyces clade of the budding yeasts. We conclude that Kat1 is a highly regulated transposase-derived endonuclease vital for sexual differentiation.


Assuntos
Fósseis , Proteínas Fúngicas/metabolismo , Kluyveromyces/genética , Kluyveromyces/fisiologia , Transposases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Quebras de DNA de Cadeia Dupla , DNA Intergênico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Transposases/química , Transposases/genética
10.
Sci Rep ; 4: 6147, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25142835

RESUMO

Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prunus/química , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS Genet ; 9(6): e1003599, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23825968

RESUMO

DNA ligase IV (Dnl4 in budding yeast) is a specialized ligase used in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Although point and truncation mutations arise in the human ligase IV syndrome, the roles of Dnl4 in DSB repair have mainly been examined using gene deletions. Here, Dnl4 catalytic point mutants were generated that were severely defective in auto-adenylation in vitro and NHEJ activity in vivo, despite being hyper-recruited to DSBs and supporting wild-type levels of Lif1 interaction and assembly of a Ku- and Lif1-containing complex at DSBs. Interestingly, residual levels of especially imprecise NHEJ were markedly higher in a deletion-based assay with Dnl4 catalytic mutants than with a gene deletion strain, suggesting a role of DSB-bound Dnl4 in supporting a mode of NHEJ catalyzed by a different ligase. Similarly, next generation sequencing of repair joints in a distinct single-DSB assay showed that dnl4-K466A mutation conferred a significantly different imprecise joining profile than wild-type Dnl4 and that such repair was rarely observed in the absence of Dnl4. Enrichment of DNA ligase I (Cdc9 in yeast) at DSBs was observed in wild-type as well as dnl4 point mutant strains, with both Dnl4 and Cdc9 disappearing from DSBs upon 5' resection that was unimpeded by the presence of catalytically inactive Dnl4. These findings indicate that Dnl4 can promote mutagenic end joining independently of its catalytic activity, likely by a mechanism that involves Cdc9.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Ligases/genética , Saccharomyces cerevisiae/genética , Catálise , DNA Ligase Dependente de ATP , Proteínas de Ligação a DNA/genética , Mutação Puntual , Proteínas de Saccharomyces cerevisiae/genética
12.
Cold Spring Harb Perspect Biol ; 5(5): a012757, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637284

RESUMO

Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Modelos Genéticos , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/fisiologia , Desoxirribonucleases/química , Desoxirribonucleases/fisiologia , Histonas/metabolismo , Mutação
13.
PLoS One ; 7(10): e47021, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071702

RESUMO

BACKGROUND: The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. METHODOLOGY/PRINCIPAL FINDINGS: Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. CONCLUSIONS/SIGNIFICANCE: The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fragaria , Extratos Vegetais/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Fatores Etários , Animais , Anticarcinógenos/farmacologia , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Antígeno Ki-67/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Camundongos , Proteínas Nucleares/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
14.
J Mol Biol ; 417(3): 197-211, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22306462

RESUMO

Repair of DNA double-strand breaks (DSBs) is crucial for maintaining genomic integrity during the successful development of a fertilized egg into a whole organism. To date, the mechanism of DSB repair in postimplantation embryos has been largely unknown. In the present study, using a cell-free repair system derived from the different embryonic stages of mice, we find that canonical nonhomologous end joining (NHEJ), one of the major DSB repair pathways in mammals, is predominant at 14.5 day of embryonic development. Interestingly, all four types of DSBs tested were repaired by ligase IV/XRCC4 and Ku-dependent classical NHEJ. Characterization of end-joined junctions and expression studies further showed evidences for canonical NHEJ. Strikingly, in contrast to the above, we observed noncanonical end joining accompanied by DSB resection, dependent on microhomology and ligase III in 18.5-day embryos. Interestingly, we observed an elevated expression of CtIP, MRE11, and NBS1 at this stage, suggesting that it could act as a switch between classical end joining and microhomology-mediated end joining at later stages of embryonic development. Thus, our results establish for the first time the existence of both canonical and alternative NHEJ pathways during the postimplantation stages of mammalian embryonic development.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Embrião de Mamíferos/fisiologia , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homóloga a MRE11 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/genética , Proteínas de Ligação a Poli-ADP-Ribose , Gravidez , Homologia de Sequência do Ácido Nucleico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Proteínas de Xenopus
15.
Eur J Med Chem ; 46(6): 2109-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21439690

RESUMO

Levamisole, the imidazo[2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo[2,1-b][1,3,4]-thiadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 µM) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Células Tumorais Cultivadas
16.
Invest New Drugs ; 29(4): 583-92, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20169399

RESUMO

Natural products discovered from medicinal plants have played an important role in the treatment of cancer. In an effort to identify novel small molecules which can affect the proliferation of lymphoma cells, we tested methyl angolensate (MA), a plant derived tetranortriterpenoid, purified from the crude extract of the root callus of Soymida febrifuga commonly known as Indian red wood tree. We have tested MA for its cytotoxic properties on Burkitt's lymphoma cell lines, using various cellular assays. We observed that MA induces cytotoxicity in Daudi cells in a dose-dependent manner using trypan blue, MTT and LDH assays. We find that the treatment with MA led to activation of DNA double-strand break repair proteins including KU70 and KU80, suggesting the activation of nonhomologous DNA end joining pathway in surviving cells. Further, we find that methyl angolensate could induce apoptosis by cell cycle analysis, annexin V-FITC staining, DNA fragmentation and PARP cleavage. Besides, MA treatment led to reactive oxygen species generation and loss of mitochondrial transmembrane potential. These results suggest the activation of mitochondrial pathway of apoptosis. Hence, we identify MA as a potential chemotherapeutic agent against Daudi cells.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Anexina A5/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Citometria de Fluxo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Propídio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
17.
Bioorg Med Chem Lett ; 20(21): 6297-301, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20832305

RESUMO

We have designed and synthesized three novel compounds, 5-isopropylidiene derivatives of 3-dimethyl-2-thio-hydantoin (ITH-1), 3-ethyl-2-thio-2,4-oxazolidinedione (ITO-1), and 5-benzilidene-3-ethyl rhodanine (BTR-1), and have tested their chemotherapeutic properties. Our results showed that all three compounds induced cytotoxicity in a time- and concentration-dependent manner on leukemic cell line, CEM. Among the compounds tested, BTR-1 was 5- to 7-fold more potent than ITH-1 and ITO-1 when compared by trypan blue and MTT assays. IC(50) value of BTR-1 was estimated to be <10µM. Both cell cycle analysis and tritiated thymidine assays revealed that BTR-1 affects DNA replication by inducing a block at S phase. BTR-1 treatment led to increased level of ROS production and DNA strand breaks suggesting activation of apoptosis for induction of cell death.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Rodanina/análogos & derivados , Rodanina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Corantes , Fragmentação do DNA , Relação Dose-Resposta a Droga , Humanos , L-Lactato Desidrogenase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Espécies Reativas de Oxigênio , Rodanina/síntese química , Sais de Tetrazólio , Tiazóis , Azul Tripano
18.
Eur J Med Chem ; 45(7): 2748-52, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20236736

RESUMO

5-Isopropylidene-3-ethyl rhodanine II was prepared by conventional and Microwave assisted synthesis. For the first time, we found that rhodanine II treatment led to cytotoxicity in leukemic cell line, CEM by inducing apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia/patologia , Rodanina/análogos & derivados , Rodanina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Rodanina/síntese química , Rodanina/química , Fatores de Tempo
19.
Int J Biomed Sci ; 6(3): 182-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23675192

RESUMO

AIM: Natural products discovered from medicinal plants have played an important role in the treatment of cancer. Methyl angolensate (MA), a tetranortriterpenoid obtained from the root callus of Indian Redwood tree, Soymida febrifuga Roxb. (A.Juss) was tested for its anticancer properties on breast cancer cells. METHODS: Cell viability was tested using trypan blue, MTT and LDH assays. Tritiated thymidine assay and flowcytometry were used to study effect of MA on cell proliferation. The activation of apoptosis was checked by annexin V and JC-1 staining followed by FACS analysis. Immunoblotting analysis was used for studying expression of apoptotic and DNA double strand break repair proteins. RESULTS: We find that MA inhibited the growth of breast cancer cell line, T47D in a time- and dose-dependent manner. MA treatment led to the inhibition of cell proliferation as detected by tritiated thymidine assay and flowcytometry. Further, MA treated cells exhibited typical apoptotic morphological changes and led to the accumulation of subG1 peak in cell cycle distribution. The induction of apoptosis was further confirmed both by annexin V staining and JC1 staining. We also find that MA activates MAP kinase pathway to induce apoptosis. Besides, we find a time dependent activation followed by degradation of DNA double-strand break repair proteins upon treatment with MA. CONCLUSION: These results suggest that MA induces cytotoxicity in breast cancer cells. Further, the altered expression of DSB repair proteins in MA treated cells may control the induction of apoptosis in these cancer cells.

20.
Bioorg Med Chem Lett ; 19(16): 4594-600, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19616939

RESUMO

We report here the synthesis and preliminary evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives 6(a-k) and their precursors 5(a-k) as potential chemotherapeutic agents. In each case, the structures of the compounds were determined by FTIR, (1)H NMR and mass spectroscopy. Among the synthesized molecules, methyl 1-(4-methoxyphenethyl)-2-(4-fluoro-3-nitrophenyl)-1H-benzimidazole-5-carboxylate (5a) induced maximum cell death in leukemic cells with an IC(50) value of 3 microM. Using FACS analysis we show that the compound 5a induces S/G2 cell cycle arrest, which was further supported by the observed down regulation of CDK2, Cyclin B1 and PCNA. The observed downregulation of proapoptotic proteins, upregulation of antiapoptotic proteins, cleavage of PARP and elevated levels of DNA strand breaks indicated the activation of apoptosis by 5a. These results suggest that 5a could be a potent anti-leukemic agent.


Assuntos
Antineoplásicos/síntese química , Benzimidazóis/síntese química , Ácidos Carboxílicos/síntese química , Leucemia/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose , Benzimidazóis/química , Benzimidazóis/uso terapêutico , Ácidos Carboxílicos/química , Ácidos Carboxílicos/uso terapêutico , Ciclo Celular , Linhagem Celular Tumoral , Ciclina B/metabolismo , Ciclina B1 , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...