Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 778: 136614, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367314

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterised by the loss of motor neurons and subsequent paralysis. Evidence indicates that synaptic alterations are associated with the early stages of ALS pathogenesis. A hallmark of ALS postmortem tissue is the presence of proteinaceous inclusions, indicative of disturbed protein homeostasis, particularly in spinal cord motor neurons. We recently demonstrated that spinal cord motor neurons contain a supersaturated proteome, as they possess proteins at concentrations that exceed their solubility limits, resulting in a metastable proteome conducive to protein misfolding and aggregation. Recent evidence indicates metastable sub-proteomes within neuronal compartments, such as the synapse, may be particularly vulnerable and underlie their involvement in the initial stages of neurodegenerative diseases. To investigate if the motor neuron presynaptic terminal possesses a metastable sub-proteome, we used human and mouse spinal cord motor neuron expression data to calculate supersaturation scores. Here, we found that both the human and mouse presynaptic terminal sub-proteomes have higher supersaturation scores than the entire motor neuron proteome. In addition, we observed that proteins down-regulated in ALS were over-represented in the synapse. These results provide support for the notion that the metastability of the sub-proteome within the motor neuron presynaptic terminal may be particularly susceptible to protein homeostasis disturbances in ALS, and may contribute to explaining the observed synaptic dysfunction in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Camundongos , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteoma/metabolismo , Medula Espinal/metabolismo , Sinapses/metabolismo
3.
Sci Rep ; 11(1): 19392, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588483

RESUMO

The synthetic copper-containing compound, CuATSM, has emerged as one of the most promising drug candidates developed for the treatment of amyotrophic lateral sclerosis (ALS). Multiple studies have reported CuATSM treatment provides therapeutic efficacy in various mouse models of ALS without any observable adverse effects. Moreover, recent results from an open label clinical study suggested that daily oral dosing with CuATSM slows disease progression in patients with both sporadic and familial ALS, providing encouraging support for CuATSM in the treatment of ALS. Here, we assessed CuATSM in high copy SOD1G93A mice on the congenic C57BL/6 background, treating at 100 mg/kg/day by gavage, starting at 70 days of age. This dose in this specific model has not been assessed previously. Unexpectedly, we report a subset of mice initially administered CuATSM exhibited signs of clinical toxicity, that necessitated euthanasia in extremis after 3-51 days of treatment. Following a 1-week washout period, the remaining mice resumed treatment at the reduced dose of 60 mg/kg/day. At this revised dose, treatment with CuATSM slowed disease progression and increased survival relative to vehicle-treated littermates. This work provides the first evidence that CuATSM produces positive disease-modifying outcomes in high copy SOD1G93A mice on a congenic C57BL/6 background. Furthermore, results from the 100 mg/kg/day phase of the study support dose escalation determination of tolerability as a prudent step when assessing treatments in previously unassessed models or genetic backgrounds.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Compostos de Cobre Orgânico , Superóxido Dismutase-1/metabolismo , Animais , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Compostos de Cobre Orgânico/administração & dosagem , Compostos de Cobre Orgânico/efeitos adversos , Compostos de Cobre Orgânico/farmacologia
4.
iScience ; 23(11): 101700, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33196025

RESUMO

A major feature of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitin (Ub) into intracellular inclusions. This sequestration of Ub may reduce the availability of free Ub, disrupting Ub homeostasis and ultimately compromising cellular function and survival. We previously reported significant disturbance of Ub homeostasis in neuronal-like cells expressing mutant SOD1. Here, we show that Ub homeostasis is also perturbed in neuronal-like cells expressing either TDP-43 or FUS. The expression of mutant TDP-43 and mutant FUS led to UPS dysfunction, which was associated with a redistribution of Ub and depletion of the free Ub pool. Redistribution of Ub is also a feature of sporadic ALS, with an increase in Ub signal associated with inclusions and no compensatory increase in Ub expression. Together, these findings suggest that alterations to Ub homeostasis caused by the misfolding and aggregation of ALS-associated proteins play an important role in the pathogenesis of ALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...