Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 259(6): 1409-1415, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35103866

RESUMO

The nucleus of some representatives of the genus Pelomyxa (Amoebozoa, Archamoebae, Pelobiontida) contains specific bodies (membrane-less organelles). They may be either embedded in the nucleolar mass or detached from the nucleolus. We termed these nuclear bodies the glomerulosomes for their characteristic ultrastructural appearance. The glomerulosomes are distinct nuclear bodies, about 1 µm in diameter. The morphological and diagnostic unit of a glomerulosome is an electron-dense thread/string, about 30-40 nm in thickness. These threads are not direct continuation of the nucleolar material. The threads create the unique geometric appearance of the glomerulosome by being organized into precisely parallel rows/cords. Each cord of the threads can curve at different angles within the glomerulosome body, but the threads themselves are not coiled. Nowadays, the glomerulosomes have been discovered in P. palustris, P. stagnalis, P. paradoxa, and Pelomyxa sp. Despite the unique appearance of glomerulosomes, their existence may be a more common phenomenon in eukaryotic cells than just a specific feature of the nucleus of elected pelomyxes.


Assuntos
Archamoebae , Nucléolo Celular , Núcleo Celular/ultraestrutura , Organelas
2.
BMC Biol ; 18(1): 187, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267865

RESUMO

BACKGROUND: The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector-transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. RESULTS: Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host's intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. CONCLUSIONS: We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. Since these parasites cannot attach to the midgut wall, they were forced to shorten the period of impaired motility when two separate flagella in dividing cells interfere with each other. The connection between the flagella ensures their coordinate movement until the separation of the daughter cells. We propose that Trypanosoma brucei, a severe human pathogen, during its development in the tsetse fly midgut faces the same conditions and follows the same strategy as Vickermania by employing an analogous adaptation, the flagellar connector.


Assuntos
Flagelos/fisiologia , Interações Hospedeiro-Parasita , Trypanosomatina/classificação , Moscas Tsé-Tsé/parasitologia , Animais , Peristaltismo , Trypanosomatina/citologia
3.
J Eukaryot Microbiol ; 66(1): 4-119, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257078

RESUMO

This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.


Assuntos
Biodiversidade , Eucariotos/classificação , Filogenia , Terminologia como Assunto
4.
Parasitol Res ; 113(11): 4207-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25185665

RESUMO

In this work, we present reisolation and redescription of Balantidium duodeni Stein, 1867 from the European common brown frog Rana temporaria Linnaeus, 1758 using light and electron microscopy. This species has a unique morphological feature--its cells are flattened along the dorsoventral axis. Because of its unique morphology and localization (duodenum) in the gastrointestinal tract of the host, it has been proposed to recognize B. duodeni as a member of separate genus, Balantidiopsis Penard, 1922. Molecular phylogenetic analysis demonstrates it to be close to the type species Balantidium entozoon (Ehrenberg, 1838). We argue that its placement into separate genus is not substantiated. We also propose to reinstate the genus Balantioides Alexeieff, 1931 with the type species Paramecium coli (Malmstein, 1857). The recently proposed generic name for this taxon, Neobalantidium Pomajbíková et al., 2013, is a junior synonym of the previously recognized name.


Assuntos
Balantidium/isolamento & purificação , Filogenia , Rana temporaria/parasitologia , Animais , Balantidíase/veterinária , Balantidium/classificação , Balantidium/ultraestrutura , DNA de Protozoário/genética , Microscopia Eletrônica de Transmissão , RNA Ribossômico 18S/genética
5.
Protist ; 164(3): 380-410, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23312407

RESUMO

The archamoebae form a small clade of anaerobic/microaerophilic flagellates or amoebae, comprising the pelobionts (mastigamoebids and pelomyxids) and the entamoebae. It is a member of the eukaryotic supergroup Amoebozoa. We examined 22 strains of 13 species of Mastigamoeba, Pelomyxa and Rhizomastix by light-microscopy and determined their SSU rRNA gene sequences. The SSU rRNA gene sequences of Pelomyxa palustris and Mastigella commutans in GenBank are shown to belong to P. stagnalis and Mastigamoeba punctachora, respectively. Five new species of free-living archamoebae are described: Mastigamoeba abducta, M. errans, M. guttula, M. lenta, and Rhizomastix libera spp. nov. A species of Mastigamoeba possibly living endosymbiotically in Pelomyxa was identified. Rhizomastix libera, the first known free-living member of that genus, is shown to be an archamoeba. R. libera possesses an ultrastructure unique within archamoebae: a rhizostyle formed from a modified microtubular cone and a flagellum with vanes. While many nominal species of pelobionts are extremely hard to distinguish by light microscopy, transient pseudopodial characters are worthy of further investigation as taxonomic markers.


Assuntos
Archamoebae/genética , Endolimax/genética , Entamoeba/genética , Evolução Molecular , Animais , Archamoebae/classificação , Archamoebae/ultraestrutura , DNA de Protozoário/análise , Endolimax/classificação , Endolimax/ultraestrutura , Entamoeba/classificação , Entamoeba/ultraestrutura , Genes de RNAr , Microscopia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...