Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Sci (Basel) ; 11(16)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34621541

RESUMO

We seek the development and evaluation of a fast, accurate, and consistent method for general-purpose segmentation, based on interactive machine learning (IML). To validate our method, we identified retrospective cohorts of 20 brain, 50 breast, and 50 lung cancer patients, as well as 20 spleen scans, with corresponding ground truth annotations. Utilizing very brief user training annotations and the adaptive geodesic distance transform, an ensemble of SVMs is trained, providing a patient-specific model applied to the whole image. Two experts segmented each cohort twice with our method and twice manually. The IML method was faster than manual annotation by 53.1% on average. We found significant (p < 0.001) overlap difference for spleen (DiceIML/DiceManual = 0.91/0.87), breast tumors (DiceIML/DiceManual = 0.84/0.82), and lung nodules (DiceIML/DiceManual = 0.78/0.83). For intra-rater consistency, a significant (p = 0.003) difference was found for spleen (DiceIML/DiceManual = 0.91/0.89). For inter-rater consistency, significant (p < 0.045) differences were found for spleen (DiceIML/DiceManual = 0.91/0.87), breast (DiceIML/DiceManual = 0.86/0.81), lung (DiceIML/DiceManual = 0.85/0.89), the non-enhancing (DiceIML/DiceManual = 0.79/0.67) and the enhancing (DiceIML/DiceManual = 0.79/0.84) brain tumor sub-regions, which, in aggregation, favored our method. Quantitative evaluation for speed, spatial overlap, and consistency, reveals the benefits of our proposed method when compared with manual annotation, for several clinically relevant problems. We publicly release our implementation through CaPTk (Cancer Imaging Phenomics Toolkit) and as an MITK plugin.

2.
J Magn Reson Imaging ; 51(1): 43-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004391

RESUMO

The degree of normal fibroglandular tissue that enhances on breast MRI, known as background parenchymal enhancement (BPE), was initially described as an incidental finding that could affect interpretation performance. While BPE is now established to be a physiologic phenomenon that is affected by both endogenous and exogenous hormone levels, evidence supporting the notion that BPE frequently masks breast cancers is limited. However, compelling data have emerged to suggest BPE is an independent marker of breast cancer risk and breast cancer treatment outcomes. Specifically, multiple studies have shown that elevated BPE levels, measured qualitatively or quantitatively, are associated with a greater risk of developing breast cancer. Evidence also suggests that BPE could be a predictor of neoadjuvant breast cancer treatment response and overall breast cancer treatment outcomes. These discoveries come at a time when breast cancer screening and treatment have moved toward an increased emphasis on targeted and individualized approaches, of which the identification of imaging features that can predict cancer diagnosis and treatment response is an increasingly recognized component. Historically, researchers have primarily studied quantitative tumor imaging features in pursuit of clinically useful biomarkers. However, the need to segment less well-defined areas of normal tissue for quantitative BPE measurements presents its own unique challenges. Furthermore, there is no consensus on the optimal timing on dynamic contrast-enhanced MRI for BPE quantitation. This article comprehensively reviews BPE with a particular focus on its potential to increase precision approaches to breast cancer risk assessment, diagnosis, and treatment. It also describes areas of needed future research, such as the applicability of BPE to women at average risk, the biological underpinnings of BPE, and the standardization of BPE characterization. Level of Evidence: 3 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:43-61.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Feminino , Humanos
3.
Clin Cancer Res ; 26(4): 862-869, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732521

RESUMO

PURPOSE: Identifying imaging phenotypes and understanding their relationship with prognostic markers and patient outcomes can allow for a noninvasive assessment of cancer. The purpose of this study was to identify and validate intrinsic imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans and evaluate their prognostic performance in predicting 10 years recurrence. EXPERIMENTAL DESIGN: Pretreatment DCE-MRI scans of 95 women with primary invasive breast cancer with at least 10 years of follow-up from a clinical trial at our institution (2002-2006) were retrospectively analyzed. For each woman, a signal enhancement ratio (SER) map was generated for the entire segmented primary lesion volume from which 60 radiomic features of texture and morphology were extracted. Intrinsic phenotypes of tumor heterogeneity were identified via unsupervised hierarchical clustering of the extracted features. An independent sample of 163 women diagnosed with primary invasive breast cancer (2002-2006), publicly available via The Cancer Imaging Archive, was used to validate phenotype reproducibility. RESULTS: Three significant phenotypes of low, medium, and high heterogeneity were identified in the discovery cohort and reproduced in the validation cohort (P < 0.01). Kaplan-Meier curves showed statistically significant differences (P < 0.05) in recurrence-free survival (RFS) across phenotypes. Radiomic phenotypes demonstrated added prognostic value (c = 0.73) predicting RFS. CONCLUSIONS: Intrinsic imaging phenotypes of breast cancer tumor heterogeneity at primary diagnosis can predict 10-year recurrence. The independent and additional prognostic value of imaging heterogeneity phenotypes suggests that radiomic phenotypes can provide a noninvasive characterization of tumor heterogeneity to augment personalized prognosis and treatment.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Algoritmos , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Análise por Conglomerados , Meios de Contraste , Feminino , Seguimentos , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Reconhecimento Automatizado de Padrão/métodos , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos
4.
J Magn Reson Imaging ; 49(4): 927-938, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30390383

RESUMO

Breast cancer is a known heterogeneous disease. Current clinically utilized histopathologic biomarkers may undersample tumor heterogeneity, resulting in higher rates of misdiagnosis for breast cancer. MRI can provide a whole-tumor sampling of disease burden and is widely utilized in clinical care. Texture analysis can provide a localized description of breast cancer, with particular emphasis on quantifying breast lesion heterogeneity. The object of this review is to provide an overview of texture analysis applications towards breast cancer diagnosis, prognosis, and treatment response evaluation and review the role of image-based texture features as noninvasive prognostic and predictive biomarkers. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:927-938.


Assuntos
Biomarcadores/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética , Feminino , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...