Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Clin Chem ; 70(5): 727-736, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38592422

RESUMO

BACKGROUND: Cell-free fetal DNA exists within the maternal bloodstream during pregnancy and provides a means for noninvasive prenatal diagnosis (NIPD). Our accredited clinical service offers definitive NIPD for several autosomal recessive (AR) and X-linked conditions using relative haplotype dosage analysis (RHDO). RHDO involves next-generation sequencing (NGS) of thousands of common single nucleotide polymorphism (SNPs) surrounding the gene of interest in the parents and an affected or unaffected offspring to conduct haplotype phasing of the high- and low-risk alleles. NGS is carried out in parallel on the maternal cell-free DNA, and fetal inheritance is predicted using sensitive dosage calculations performed at sites where the parental genotypes differ. RHDO is not currently offered to consanguineous couples owing to the shared haplotype between parents. Here we test the expansion of RHDO for AR monogenic conditions to include consanguineous couples. METHODS: The existing sequential probability ratio test analysis pipeline was modified to apply to SNPs where both parents are heterozygous for the same genotype. Quality control thresholds were developed using 33 nonconsanguineous cases. The performance of the adapted RHDO pipeline was tested on 8 consanguineous cases. RESULTS: The correct fetal genotype was predicted by our revised RHDO approach in all conclusive cases with known genotypes (n = 5). Haplotype block classification accuracies of 94.5% and 93.9% were obtained for the nonconsanguineous and consanguineous case cohorts, respectively. CONCLUSIONS: Our modified RHDO pipeline correctly predicts the genotype in fetuses from consanguineous families, allowing the potential to expand access to NIPD services for these families.


Assuntos
Consanguinidade , Haplótipos , Teste Pré-Natal não Invasivo , Humanos , Feminino , Gravidez , Teste Pré-Natal não Invasivo/métodos , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala , Ácidos Nucleicos Livres/genética , Diagnóstico Pré-Natal/métodos , Masculino
2.
Prenat Diagn ; 44(4): 465-479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441167

RESUMO

OBJECTIVES: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England. This study aimed to explore parent experiences and their information and support needs from the perspective of parents offered pES and of health professionals involved in its delivery. METHODS: In this qualitative study, semi-structured interviews were conducted with 42 women and 6 male partners and 63 fetal medicine and genetic health professionals. Interviews were transcribed verbatim and analysed using thematic analysis. RESULTS: Overall views about pES were positive and parents were grateful to be offered the test. Highlighted benefits of pES included the value of the additional information for pregnancy management and planning for future pregnancies. An anxious wait for results was common, often associated with the need to make decisions near to 24 weeks in pregnancy when there are legal restrictions for late termination. Descriptions of dealing with uncertainty were also common, even when results had been returned. Many parents described pES results as informing decision-making around whether or not to terminate pregnancy. Some professionals were concerned that a non-informative result could be overly reassuring and highlighted that careful counselling was needed to ensure parents have a good understanding of what the result means for their pregnancy. Emotional support from professionals was valued; however, some parents felt that post-test support was lacking. CONCLUSION: Parents and professionals welcomed the introduction of pES. Results inform parents' decision-making around the termination of pregnancy. When there are no diagnostic findings or uncertain findings from pES, personalised counselling that considers scans and other tests are crucial. Directing parents to reliable online sources of information and providing emotional support throughout could improve their experiences of care.


Assuntos
Pais , Medicina Estatal , Gravidez , Humanos , Masculino , Feminino , Sequenciamento do Exoma , Pais/psicologia , Inglaterra , Aconselhamento , Pesquisa Qualitativa
4.
Prenat Diagn ; 44(4): 422-431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38054560

RESUMO

OBJECTIVES: Determine the incremental diagnostic yield of prenatal exome sequencing (pES) over chromosome microarray (CMA) or G-banding karyotype in fetuses with central nervous system (CNS) abnormalities. METHODS: Data were collected via electronic searches from January 2010 to April 2022 in MEDLINE, Cochrane, Web of Science and EMBASE. The NHS England prenatal exome cohort was also included. Incremental yield was calculated as a pooled value using a random-effects model. RESULTS: Thirty studies were included (n = 1583 cases). The incremental yield with pES for any CNS anomaly was 32% [95%CI 27%-36%; I2 = 72%]. Subgroup analysis revealed apparent incremental yields in; (a) isolated CNS anomalies; 27% [95%CI 19%-34%; I2 = 74%]; (b) single CNS anomaly; 16% [95% CI 10%-23%; I2 = 41%]; (c) more than one CNS anomaly; 31% [95% Cl 21%-40%; I2 = 56%]; and (d) the anatomical subtype with the most optimal yield was Type 1 malformation of cortical development, related to abnormal cell proliferation or apoptosis, incorporating microcephalies, megalencephalies and dysplasia; 40% (22%-57%; I2 = 68%). The commonest syndromes in isolated cases were Lissencephaly 3 and X-linked hydrocephalus. CONCLUSIONS: Prenatal exome sequencing provides a high incremental diagnostic yield in fetuses with CNS abnormalities with optimal yields in cases with multiple CNS anomalies, particularly those affecting the midline, posterior fossa and cortex.


Assuntos
Hidrocefalia , Malformações do Sistema Nervoso , Gravidez , Feminino , Humanos , Estudos Prospectivos , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Cariotipagem , Cariótipo , Feto/anormalidades , Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal
5.
Prenat Diagn ; 44(4): 389-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37991340

RESUMO

Noninvasive cfDNA testing for monogenic disorders (sgNIPT) has become integrated into the care of pregnant women at increased risk based on carrier status, known family history, or ultrasound anomalies. The availability of commercial tests for common autosomal recessive and de novo autosomal dominant conditions has led to the use of these tests in low-risk pregnancies. However, is the technology ready for use in this low-risk population? This report is a summary of the debate on this topic at the 27th International Conference on Prenatal Diagnosis and Therapy. Both expert debaters provided strong arguments in favor and against the use of sgNIPT in low-risk pregnancies. The argument in favor of sgNIPT for autosomal recessive conditions is that it allows the identification of affected pregnancies without the need for involving the partner in testing. Arguments for sgNIPT for autosomal dominant conditions include identification of affected fetuses that would have either presented later in pregnancy with fetal anomalies or not been detected prenatally given normal ultrasounds, respect for patient autonomy and patient desire for information. Strong arguments were made against offering sgNIPT screening. Given that traditional carrier screening for recessive conditions can be carried out in many jurisdictions, the added value of sgNIPT has not been clearly demonstrated. Arguments against sgNIPT for autosomal dominant conditions included the total lack of clinical validation studies and the risk of false reassurance in cases of negative results and unnecessary invasive procedures in cases of false positive results. Although there is a desire to take advantage of new technologies to improve the detection of monogenic disorders in low-risk populations, based on the discussion and the audience vote, it appears premature to offer sgNIPT to all low risk pregnant women. Further clinical validation studies are needed prior to broad implementation.


Assuntos
Ácidos Nucleicos Livres , Gravidez , Humanos , Feminino , Diagnóstico Pré-Natal/métodos , Fatores de Risco
6.
Orphanet J Rare Dis ; 18(1): 364, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996938

RESUMO

BACKGROUND: Poorly coordinated care can have major impacts on patients and families affected by rare conditions, with negative physical health, psychosocial and financial consequences. This study aimed to understand how care is coordinated for rare diseases in the United Kingdom. METHODS: We undertook a national survey in the UK involving 760 adults affected by rare diseases, 446 parents/carers of people affected by rare diseases, and 251 healthcare professionals who care for people affected by rare diseases. RESULTS: Findings suggested that a wide range of patients, parents and carers do not have coordinated care. For example, few participants reported having a care coordinator (12% patients, 14% parents/carers), attending a specialist centre (32% patients, 33% parents/carers) or having a care plan (10% patients, 44% parents/carers). A very small number of patients (2%) and parents/carers (5%) had access to all three-a care coordinator, specialist centre and care plan. Fifty four percent of patients and 33% of parents/carers reported access to none of these. On the other hand, a higher proportion of healthcare professionals reported that families with rare conditions had access to care coordinators (35%), specialist centres (60%) and care plans (40%). CONCLUSIONS: Care for families with rare conditions is generally not well coordinated in the UK, with findings indicating limited access to care coordinators, specialist centres and care plans. Better understanding of these issues can inform how care coordination might be improved and embrace the needs and preferences of patients and families affected by rare conditions.


Assuntos
Cuidadores , Doenças Raras , Adulto , Humanos , Cuidadores/psicologia , Estudos Transversais , Doenças Raras/terapia , Reino Unido , Atenção à Saúde
7.
Eur J Hum Genet ; 31(12): 1407-1413, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37789083

RESUMO

We used cross-sectional surveys to compare the knowledge, attitudes, and decision regret of participants who had consented for genome sequencing (GS) for rare disease diagnosis in the 100,000 Genomes Project (100kGP) across two timepoints (at the time of consenting for GS (T1) and 12-18 months later (T2)). At T1, participants (n = 504) completed a survey that included measures of general knowledge of GS ("Knowledge of Genome Sequencing" (KOGS)), specific knowledge of GS and attitudes towards GS ("General attitudes" and "Specific attitudes"). At T2, participants (n = 296) completed these same assessments (apart from the specific knowledge scale) together with an assessment of decision regret towards GS ("Decisional Regret Scale"). At 12-18 months after consenting for GS, participants' basic knowledge of GS had remained stable. General knowledge of GS varied across topics; concepts underlying more general information about genetics were better understood than the technical details of genomic testing. Attitudes towards GS at T2 were generally positive, and feelings towards GS (both positive and negative) remained unchanged. However, those who were more positive about the test at the outset had greater specific knowledge (as opposed to general knowledge) of GS. Finally, although the majority of participants indicated feeling little regret towards undergoing GS, those with low positive attitude and high negative attitude about GS at T1 reported greater decision regret at T2. Careful assessment of patient knowledge about and attitudes towards GS at the time of offering testing is crucial for supporting informed decision making and mitigating later regret.


Assuntos
Tomada de Decisões , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Estudos Transversais , Emoções , Estudos Longitudinais , Inquéritos e Questionários
8.
Lancet Neurol ; 22(9): 812-825, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596007

RESUMO

BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.


Assuntos
Epilepsia , Convulsões Febris , Masculino , Feminino , Recém-Nascido , Humanos , Criança , Projetos Piloto , Estudos de Coortes , Estudos de Viabilidade , Epilepsia/diagnóstico , Epilepsia/genética , Ontário
9.
Expert Rev Mol Diagn ; 23(9): 797-814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642407

RESUMO

INTRODUCTION: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.


Mitochondria generate our bodies' energy, and they contain their own circular DNA molecules. Changes in this mitochondrial DNA can cause a wide range of genetic diseases. Improved computer processing of the sequence of this DNA and new techniques that can read the full DNA sequence in one experiment may enhance our ability to understand these genetic variants.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos
11.
Prenat Diagn ; 43(4): 477-488, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36760169

RESUMO

OBJECTIVES: To develop a flexible droplet digital PCR (ddPCR) workflow to perform non-invasive prenatal diagnosis via relative mutation dosage (RMD) for maternal pathogenic variants with a range of inheritance patterns, and to compare the accuracy of multiple analytical approaches. METHODS: Cell free DNA (cfDNA) was tested from 124 archived maternal plasma samples: 88 cases for sickle cell disease and 36 for rare Mendelian conditions. Three analytical methods were compared: sequential probability ratio testing (SPRT), Bayesian and z-score analyses. RESULTS: The SPRT, Bayesian and z-score analyses performed similarly well with correct prediction rates of 96%, 97% and 98%, respectively. However, there were high rates of inconclusive results for each cohort, particularly for z-score analysis which was 31% overall. Two samples were incorrectly classified by all three analytical methods; a false negative result predicted for a fetus affected with sickle cell disease and a false positive result predicting the presence of an X-linked IDS variant in an unaffected fetus. CONCLUSIONS: ddPCR can be applied to RMD for diverse conditions and inheritance patterns, but all methods carry a small risk of erroneous results. Further evaluation is required both to reduce the rate of inconclusive results and explore discordant results in more detail.


Assuntos
Anemia Falciforme , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Diagnóstico Pré-Natal/métodos , Genótipo , Alelos , Teorema de Bayes , Feto , Reação em Cadeia da Polimerase/métodos , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética
12.
Clin Chem ; 69(2): 160-167, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576352

RESUMO

BACKGROUND: Fetal fraction (FF) measurement is considered important for reliable noninvasive prenatal testing (NIPT). Using minimal FF threshold as a quality parameter is under debate. We evaluated the variability in reported FFs of individual samples between providers and laboratories and within a single laboratory. METHODS: Genomic quality assessment and European Molecular Genetics Quality Network provide joint proficiency testing for NIPT. We compared reported FFs across all laboratories and stratified according to test methodologies. A single sample was sequenced repeatedly and FF estimated by 2 bioinformatics methods: Veriseq2 and SeqFF. Finally, we compared FFs by Veriseq and SeqFF in 87 351 NIPT samples. RESULTS: For each proficiency test sample we observed a large variability in reported FF, SDs and CVs ranging from 1.7 to 3.6 and 17.0 to 35.8, respectively. FF measurements reported by single nucleotide polymorphism-based methods had smaller SDs (0.5 to 2.4) compared to whole genome sequencing-based methods (1.8 to 2.9). In the internal quality assessment, SDs were similar between SeqFF (SD 1.0) and Veriseq v2 (SD 0.9), but mean FF by Veriseq v2 was higher compared to SeqFF (9.0 vs 6.4, P 0.001). In patient samples, reported FFs were on average 1.12-points higher in Veriseq than in SeqFF (P 0.001). CONCLUSIONS: Current methods do not allow for a reliable and consistent FF estimation. Our data show estimated FF should be regarded as a laboratory-specific range, rather than a precise number. Applying strict universal minimum thresholds might result in unnecessary test failures and should be used with caution.


Assuntos
Teste Pré-Natal não Invasivo , Gravidez , Feminino , Humanos , Cuidado Pré-Natal , Feto , Genômica , Genoma , Diagnóstico Pré-Natal/métodos , Aneuploidia
13.
Am J Obstet Gynecol ; 228(4): 409-417.e4, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36209938

RESUMO

OBJECTIVE: This study aimed to determine the incremental yield of prenatal exome sequencing over chromosomal microarray or G-banding karyotype in fetuses with: (1) intrauterine growth restriction related to placental insufficiency or (2) short long bones, in isolated and nonisolated instances for both scenarios. DATA SOURCES: Data were collected via electronic searches for relevant citations from January 2010 to April 10, 2022 in MEDLINE, Embase, Web of Science, and Cochrane, and using relevant bibliographies and data generated in-house. STUDY ELIGIBILITY CRITERIA: Included were prospective or retrospective cohort studies and/or case series with: (1) n>5 cases of short long bones and/or intrauterine growth restriction undergoing prenatal sequencing with a clearly defined phenotype including assessment of placental function; (2) testing based on prenatal phenotype only; (3) a nondiagnostic chromosomal microarray/karyotype; and (4) known results of genetic testing. METHODS: Incremental yield was calculated for each study and as a pooled value for the aforementioned groups using a random-effects model. Results were displayed in forest plots with 95% confidence intervals. Heterogeneity was assessed statistically using Higgins' I2. Publication bias was assessed graphically using funnel plots. Quality assessment was performed using modified Standards for Reporting of Diagnostic Accuracy criteria (International Prospective Register of Systematic Reviews registration number CRD42022324680). RESULTS: Nineteen studies were included (n=452 cases). The apparent incremental yields with prenatal sequencing were: (1) 4% (95% confidence interval, -5.0 to 12; I2=0%) in isolated intrauterine growth restriction with evidence of placental insufficiency, (2) 30% (95% confidence interval, 13-47; I2=1%) in intrauterine growth restriction with additional structural anomalies, (3) 48% (95% confidence interval, 26-70; I2=73%) in isolated short long bones, and (4) 68% (95% confidence interval, 58-77; I2=51%) in short long bones with additional skeletal anomalies. Of the 37 short long bone cases with a diagnosis, 32 had a skeletal dysplasia, with thanatophoric dysplasia and osteogenesis imperfecta being the most common (both 21.6% [n=8/37]). In fetuses with short long bones and additional skeletal features, osteogenesis imperfecta was the most common diagnosis (28% [n=57/204]). Where documented, the inheritance patterns were de novo in 75.4% (n=150) of cases. CONCLUSION: Prenatal sequencing adds substantially to incremental yield over chromosomal microarray in fetuses with short long bones or multisystem intrauterine growth restriction. Robust studies are required to assess the utility of fetal sequencing in isolated intrauterine growth restriction with evidence of placental insufficiency, which cannot be recommended on the basis of current evidence.


Assuntos
Osteogênese Imperfeita , Insuficiência Placentária , Humanos , Gravidez , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Insuficiência Placentária/genética , Sequenciamento do Exoma , Estudos Retrospectivos , Placenta , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal
14.
Clin Sci (Lond) ; 136(22): 1615-1629, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383187

RESUMO

Cell-free fetal DNA (cffDNA) is released into the maternal circulation from trophoblastic cells during pregnancy, is detectable from 4 weeks and is representative of the entire fetal genome. The presence of this cffDNA in the maternal bloodstream has enabled clinical implementation of non-invasive prenatal diagnosis (NIPD) for monogenic disorders. Detection of paternally inherited and de novo mutations is relatively straightforward, and several methods have been developed for clinical use, including quantitative polymerase chain reaction (qPCR), and PCR followed by restriction enzyme digest (PCR-RED) or next-generation sequencing (NGS). A greater challenge has been in the detection of maternally inherited variants owing to the high background of maternal cell-free DNA (cfDNA). Molecular counting techniques have been developed to measure subtle changes in allele frequency. For instance, relative haplotype dosage analysis (RHDO), which uses single nucleotide polymorphisms (SNPs) for phasing of high- and low-risk alleles, is clinically available for several monogenic disorders. A major drawback is that RHDO requires samples from both parents and an affected or unaffected proband, therefore alternative methods, such as proband-free RHDO and relative mutation dosage (RMD), are being investigated. cffDNA was thought to exist only as short fragments (<500 bp); however, long-read sequencing technologies have recently revealed a range of sizes up to ∼23 kb. cffDNA also carries a specific placental epigenetic mark, and so fragmentomics and epigenetics are of interest for targeted enrichment of cffDNA. Cell-based NIPD approaches are also currently under investigation as a means to obtain a pure source of intact fetal genomic DNA.


Assuntos
Ácidos Nucleicos Livres , Feminino , Gravidez , Humanos , Ácidos Nucleicos Livres/genética , Placenta , Diagnóstico Pré-Natal/métodos , Haplótipos , DNA/genética
16.
Prenat Diagn ; 42(7): 831-844, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35506549

RESUMO

BACKGROUND: Prenatal exome sequencing (ES) for monogenic disorders in fetuses with structural anomalies increases diagnostic yield. In England there is a national trio ES service delivered from two laboratories. To minimise incidental findings and reduce the number of variants investigated, analysis uses a panel of 1205 genes where pathogenic variants may cause abnormalities presenting prenatally. Here we review our laboratory's early experience developing and delivering ES to identify challenges in interpretation and reporting and inform service development. METHODS: A retrospective laboratory records review from 01.04.2020 to 31.05.2021. RESULTS: Twenty-four of 116 completed cases were identified as challenging including 13 resulting in difficulties in analysis and reporting, nine where trio inheritance filtering would have missed the diagnosis, and two with no prenatal diagnosis; one due to inadequate pipeline sensitivity, the other because the gene was not on the panel. Two cases with copy number variants identified were not detectable by microarray. CONCLUSIONS: Variant interpretation requires close communication between referring clinicians, with occasional additional examination of the fetus or parents and communication of evolving phenotypes. Inheritance filtering misses ∼5% of diagnoses. Panel analysis reduces but does not exclude incidental findings. Regular review of published literature is required to identify new reports that may aid classification.


Assuntos
Exoma , Ultrassonografia Pré-Natal , Feminino , Feto/diagnóstico por imagem , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos , Sequenciamento do Exoma/métodos
17.
Prenat Diagn ; 42(6): 796-803, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35583085

RESUMO

The research and clinical use of genome-wide sequencing for prenatal diagnosis of fetuses at risk for genetic disorders have rapidly increased in recent years. Current data indicate that the diagnostic rate is comparable and for certain indications higher than that of standard testing by karyotype and chromosomal microarray. Responsible clinical implementation and diagnostic use of prenatal sequencing depends on standardized laboratory practices and detailed pre-test and post-test counseling. This Updated Position Statement on behalf of the International Society for Prenatal Diagnosis recommends best practices for the clinical use of prenatal exome and genome sequencing from an international perspective. We include several new points for consideration by researchers and clinical service and laboratory providers.


Assuntos
Exoma , Diagnóstico Pré-Natal , Feminino , Humanos , Cariotipagem , Análise em Microsséries , Gravidez , Sequenciamento do Exoma
18.
Prenat Diagn ; 42(6): 783-795, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383981

RESUMO

OBJECTIVES: Prenatal exome sequencing (pES) for the diagnosis of fetal abnormalities is being introduced more widely in clinical practice. Here we explore parents' and professionals' views and experiences of pES, to identify perceived benefits, concerns, and support needs. METHODS: Semi-structured interviews were conducted with 11 parents and 20 health professionals (fetal medicine and clinical genetics) with experience of rapid pES prior to implementation in the English National Health Service. Interviews were transcribed verbatim and analysed thematically. RESULTS: Parents and professionals were largely positive about pES, emphasising clinical and psychosocial benefits of a timely, definitive diagnosis in pregnancy. Concerns included parental anxiety related to the timing of pES results or uncertain findings, a need for guidelines for case selection and reporting, and ensuring sufficient capacity for counselling, phenotyping and variant interpretation. Professionals were concerned non-genetics professionals may not be equipped to counsel parents on the complexities of pES. CONCLUSION: These findings highlight important issues for clinical implementation of pES. Expert counselling is required to enable parents to make informed decisions during a stressful time. To achieve this, professionals need further education and training, and fetal medicine and genetics services must work closely together to ensure parental understanding and appropriate support.


Assuntos
Exoma , Medicina Estatal , Feminino , Pessoal de Saúde , Humanos , Pais/psicologia , Gravidez , Pesquisa Qualitativa , Sequenciamento do Exoma
19.
Prenat Diagn ; 42(7): 934-946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35476801

RESUMO

OBJECTIVE: We conducted a survey-based discrete-choice experiment (DCE) to understand the test features that drive women's preferences for prenatal genomic testing, and explore variation across countries. METHODS: Five test attributes were identified as being important for decision-making through a literature review, qualitative interviews and quantitative scoring exercise. Twelve scenarios were constructed in which respondents choose between two invasive tests or no test. Women from eight countries who delivered a baby in the previous 24 months completed a DCE presenting these scenarios. Choices were modeled using conditional logit regression analysis. RESULTS: Surveys from 1239 women (Australia: n = 178; China: n = 179; Denmark: n = 88; Netherlands: n = 177; Singapore: n = 90; Sweden: n = 178; UK: n = 174; USA: n = 175) were analyzed. The key attribute affecting preferences was a test with the highest diagnostic yield (p < 0.01). Women preferred tests with short turnaround times (p < 0.01), and tests reporting variants of uncertain significance (VUS; p < 0.01) and secondary findings (SFs; p < 0.01). Several country-specific differences were identified, including time to get a result, who explains the result, and the return of VUS and SFs. CONCLUSION: Most women want maximum information from prenatal genomic tests, but our findings highlight country-based differences. Global consensus on how to return uncertain results is not necessarily realistic or desirable.


Assuntos
Comportamento de Escolha , Preferência do Paciente , Feminino , Testes Genéticos , Genômica , Humanos , Gravidez , Diagnóstico Pré-Natal , Inquéritos e Questionários
20.
Eur J Hum Genet ; 30(5): 604-610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35264738

RESUMO

In this mixed methods study, a survey and in-depth interviews were used to explore whether decision regret and the psychological impact of receiving genome sequencing (GS) results differed between parents and patients, and between those who received a genetic diagnosis and those who did not. Participants (n = 77) completed a survey that included the Decisional Regret Scale (DRS) and an adaptation of the Multidimensional Impact of Cancer Risk Assessment (MICRA) at least 12 months after consenting for GS for rare disease diagnosis in the 100,000 Genomes Project. Survey participants were invited to take part in an interview and 39 agreed; 12 with a diagnosis, 5 with variants of uncertain significance, and 19 with no pathogenic findings identified. Both survey and interview findings indicated that decision regret was low. DRS scores revealed no differences in levels of regret between parents and patients, or between those with a diagnosis and those without. Though MICRA scores indicated minimal evidence of negative psychological impacts of receiving GS results, subscale analysis revealed greater distress and uncertainty for parents compared to patients. Receiving a diagnosis was found not to influence MICRA scores, supporting interview findings of both positive and negative emotional and psychological impacts irrespective of a genetic diagnosis. Our findings have implications for policy and practice as GS is integrated into the UK and worldwide; notably, that expectation-setting is critical when offering GS, and that post-test counselling is important regardless of the GS result received, with parents perhaps needing additional emotional support.


Assuntos
Pais , Doenças Raras , Sequência de Bases , Emoções , Humanos , Pais/psicologia , Doenças Raras/diagnóstico , Doenças Raras/genética , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...