Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 104(10): 102129, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222914

RESUMO

Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.

2.
Eur J Pharmacol ; 980: 176867, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111683

RESUMO

BACKGROUND: MARCKS (myristoylated alanine-rich C kinase substrates) serves as a substrate for protein kinase C, residing in the plasma membrane while acts as an actin filament crosslinking protein. This investigation aims to elucidate phosphorylated MARCKS (p-MARCKS) levels and activity in allergic asthma patients and explore the therapeutic potential of peptide inhibitors targeting p-MARCKS in an acute mouse model of allergic asthma. METHODS: Immunohistochemistry and histology staining were employed on lung tissue slides to evaluate p-MARCKS expression and allergic asthma symptoms. Airway resistance was measured using invasive whole-body plethysmography. Flow cytometry detected lung dendritic cell migration, and migration/maturation assays were conducted on isolated murine bone marrow-derived dendritic cells (BM-DCs). RESULTS: Elevated p-MARCKS expression was observed in both human asthmatic tissues and animal models immunized with ovalbumin or Alternaria alternata. Remarkably, asthmatic individuals showed elevated high p-MARCKS expression in lung tissues. Intraperitoneal injection of the peptide MPS, targeting the MARCKS phosphorylation site domain, before allergen challenged, effectively suppressed MARCKS phosphorylation in murine lung tissues. MPS inhibited both in vivo and in vitro migration and maturation of dendritic cells (BM-DCs) and reduced Th2-related lymphocyte activation in bronchoalveolar lavage fluid (BALF). MPS pretreatment additionally suppressed all symptoms associated with allergic airway asthma, including a reduction in inflammatory cell influx, airway mucous cell metaplasia, and airway hyperreactivity. CONCLUSION: These findings suggest that phosphorylated MARCKS occurs in asthmatic lung tissue, and the inhibition of MARCKS phosphorylation by the MPS peptide reduces dendritic cell migration and Th2-related lymphocytes in the lungs in a murine model of acute asthma.


Assuntos
Asma , Movimento Celular , Células Dendríticas , Substrato Quinase C Rico em Alanina Miristoilada , Animais , Feminino , Humanos , Masculino , Camundongos , Doença Aguda , Asma/imunologia , Asma/tratamento farmacológico , Asma/patologia , Asma/metabolismo , Movimento Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Peptídeos/farmacologia , Fosforilação
3.
J Transl Med ; 22(1): 383, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659028

RESUMO

BACKGROUND: Loss of AZGP1 expression is a biomarker associated with progression to castration resistance, development of metastasis, and poor disease-specific survival in prostate cancer. However, high expression of AZGP1 cells in prostate cancer has been reported to increase proliferation and invasion. The exact role of AZGP1 in prostate cancer progression remains elusive. METHOD: AZGP1 knockout and overexpressing prostate cancer cells were generated using a lentiviral system. The effects of AZGP1 under- or over-expression in prostate cancer cells were evaluated by in vitro cell proliferation, migration, and invasion assays. Heterozygous AZGP1± mice were obtained from European Mouse Mutant Archive (EMMA), and prostate tissues from homozygous knockout male mice were collected at 2, 6 and 10 months for histological analysis. In vivo xenografts generated from AZGP1 under- or over-expressing prostate cancer cells were used to determine the role of AZGP1 in prostate cancer tumor growth, and subsequent proteomics analysis was conducted to elucidate the mechanisms of AZGP1 action in prostate cancer progression. AZGP1 expression and microvessel density were measured in human prostate cancer samples on a tissue microarray of 215 independent patient samples. RESULT: Neither the knockout nor overexpression of AZGP1 exhibited significant effects on prostate cancer cell proliferation, clonal growth, migration, or invasion in vitro. The prostates of AZGP1-/- mice initially appeared to have grossly normal morphology; however, we observed fibrosis in the periglandular stroma and higher blood vessel density in the mouse prostate by 6 months. In PC3 and DU145 mouse xenografts, over-expression of AZGP1 did not affect tumor growth. Instead, these tumors displayed decreased microvessel density compared to xenografts derived from PC3 and DU145 control cells, suggesting that AZGP1 functions to inhibit angiogenesis in prostate cancer. Proteomics profiling further indicated that, compared to control xenografts, AZGP1 overexpressing PC3 xenografts are enriched with angiogenesis pathway proteins, including YWHAZ, EPHA2, SERPINE1, and PDCD6, MMP9, GPX1, HSPB1, COL18A1, RNH1, and ANXA1. In vitro functional studies show that AZGP1 inhibits human umbilical vein endothelial cell proliferation, migration, tubular formation and branching. Additionally, tumor microarray analysis shows that AZGP1 expression is negatively correlated with blood vessel density in human prostate cancer tissues. CONCLUSION: AZGP1 is a negative regulator of angiogenesis, such that loss of AZGP1 promotes angiogenesis in prostate cancer. AZGP1 likely exerts heterotypical effects on cells in the tumor microenvironment, such as stromal and endothelial cells. This study sheds light on the anti-angiogenic characteristics of AZGP1 in the prostate and provides a rationale to target AZGP1 to inhibit prostate cancer progression.


Assuntos
Movimento Celular , Proliferação de Células , Neovascularização Patológica , Neoplasias da Próstata , Masculino , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Linhagem Celular Tumoral , Camundongos Knockout , Glicoproteínas/metabolismo , Invasividade Neoplásica , Camundongos , Regulação Neoplásica da Expressão Gênica , Angiogênese , Glicoproteína Zn-alfa-2
5.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047232

RESUMO

Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Estruturas R-Loop , Humanos , Masculino , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica
6.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230850

RESUMO

The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells. MARCKS plays important roles in multiple cellular processes, including cell adhesion and motility, mucin secretion, exocytosis, and inflammatory response. Aberrant MARCKS signaling has been observed in the development and progression of multiple cancer types. In addition, MARCKS facilitates cancer metastasis through modulating cancer cell migration and invasion. Moreover, MARCKS contributes to treatment resistance, likely by promoting cancer stem cell renewal as well as immunosuppression. In this review, we describe MARCKS protein structure, cellular localization, and biological functions. We then discuss the role of MARCKS in cancer metastasis as well as its mechanisms of action in solid tumors. Finally, we review recent advances in targeting MARCKS as a new therapeutic strategy in cancer management.

7.
Carbohydr Res ; 519: 108598, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35691122

RESUMO

Sialic acids have been implicated in cancer initiation, progression, and immune evasion in diverse human malignancies. Sialylation of terminal glycans on cell surface and secreted glycoproteins is a long-recognized feature of cancer cells. Recently, immune checkpoint inhibitor immunotherapy has tremendously improved the outcomes of patients with various cancers. However, available immunotherapy approaches have had limited efficacy in metastatic castration-resistant prostate cancer. Sialic acid modified glycoproteins in prostate cancers and their interaction with Siglec receptors on tumor infiltrating immune cells might underlie immunosuppressive signaling in prostate cancer. Here, we summarize the function of sialic acids and relevant glycosynthetic enzymes in cancer initiation and progression. We also discuss the possible uses of sialic acids as biomarkers in prostate cancer and the potential methods for targeting Siglec-sialic acid interactions for prostate cancer treatment.


Assuntos
Glicoproteínas , Ácido N-Acetilneuramínico , Neoplasias da Próstata , Biomarcadores , Glicoproteínas/metabolismo , Humanos , Fatores Imunológicos , Masculino , Ácido N-Acetilneuramínico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos
8.
Cell Death Dis ; 10(12): 871, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740667

RESUMO

Cystic kidney disease is the progressive development of multiple fluid-filled cysts that may severely compromise kidney functions and lead to renal failure. TNS1 (tensin-1) knockout mice develop cystic kidneys and die from renal failure. Here, we have established TNS1-knockout MDCK cells and applied 3D culture system to investigate the mechanism leading to cyst formation. Unlike wild-type MDCK cells, which form cysts with a single lumen, TNS1-knockout cysts contain multiple lumens and upregulated Mek/Erk activities. The multiple lumen phenotype and Mek/Erk hyperactivities are rescued by re-expression of wild-type TNS1 but not the TNS1 mutant lacking a fragment essential for its cell-cell junction localization. Furthermore, Mek inhibitor treatments restore the multiple lumens back to single lumen cysts. Mek/Erk hyperactivities are also detected in TNS1-knockout mouse kidneys. Treatment with the Mek inhibitor trametinib significantly reduces the levels of interstitial infiltrates, fibrosis and dilated tubules in TNS1-knockout kidneys. These studies establish a critical role of subcellular localization of TNS1 in suppressing Mek/Erk signaling and maintaining lumenogenesis, and provide potential therapeutic strategies by targeting the Mek/Erk pathway for cystic kidney diseases.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Doenças Renais Policísticas/metabolismo , Tensinas/metabolismo , Animais , Proliferação de Células , Camundongos , Camundongos Knockout , Transfecção
10.
Am J Chin Med ; 44(1): 133-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26916919

RESUMO

The root of Polygonum multiflorum (also called He-Shou-Wu in Chinese) is a common herb and medicinal food in Asia used for its anti-aging properties. Our study investigated the therapeutic potential of an extract of the root of Polygonum multiflorum (PME) in allergic asthma by using a mouse model. Feeding of 0.5 and 1 mg/mouse PME inhibited ovalbumin (OVA)-induced allergic asthma symptoms, including airway inflammation, mucus production, and airway hyper-responsiveness (AHR), in a dose-dependent manner. To discern PME's mechanism of action, we examined the profile and cytokine production of inflammatory cells in bronchial alveolar lavage fluid (BALF). We found that eosinophils, the main inflammatory cell infiltrate in the lung of OVA-immunized mice, significantly decreased after PME treatment. Th2 cytokine levels, including interleukin (IL)-4, IL-5, IL-13, eotaxin, and the proinflammatory cytokine tumor necrosis factor (TNF)-[Formula: see text], decreased in PME-treated mice. Elevated mRNA expression of Th2 transcription factor GATA-3 in the lung tissue was also inhibited after oral feeding of PME in OVA-immunized mice. Thus, we conclude that PME produces anti-asthma activity through the inhibition of Th2 cell activation.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Fallopia multiflora/química , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Administração Oral , Animais , Asma/metabolismo , Asma/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fator de Transcrição GATA3/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina , Raízes de Plantas
11.
Am J Respir Crit Care Med ; 190(10): 1127-38, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25318062

RESUMO

RATIONALE: Phosphorylation of myristoylated alanine-rich C kinase substrate (phospho-MARCKS) at the phosphorylation site domain (PSD) is crucial for mucus granule secretion and cell motility, but little is known concerning its function in lung cancer. OBJECTIVES: We aimed to determine if MARCKS PSD activity can serve as a therapeutic target and to elucidate the molecular basis of this potential. METHODS: The clinical relevance of phospho-MARCKS was first confirmed. Next, we used genetic approaches to verify the functionality and molecular mechanism of phospho-MARCKS. Finally, cancer cells were pharmacologically inhibited for MARCKS activity and subjected to functional bioassays. MEASUREMENTS AND MAIN RESULTS: We demonstrated that higher phospho-MARCKS levels were correlated with shorter overall survival of lung cancer patients. Using shRNA silencing and ectopic expression of wild-type and PSD-mutated (S159/163A) MARCKS, we showed that elevated phospho-MARCKS promoted cancer growth and erlotinib resistance. Further studies demonstrated an interaction of phosphoinositide 3-kinase with MARCKS, but not with phospho-MARCKS. Interestingly, phospho-MARCKS acted in parallel with increased phosphatidylinositol (3,4,5)-triphosphate pools and AKT activation in cells. Through treatment with a 25-mer peptide targeting the MARCKS PSD motif (MPS peptide), we were able to suppress tumor growth and metastasis in vivo, and reduced levels of phospho-MARCKS, phosphatidylinositol (3,4,5)-triphosphate, and AKT activity. This peptide also enhanced the sensitivity of lung cancer cells to erlotinib treatment, especially those with sustained activation of phosphoinositide 3-kinase/AKT signaling. CONCLUSIONS: These results suggest a key role for MARCKS PSD in cancer disease and provide a unique strategy for inhibiting the activity of MARCKS PSD as a treatment for lung cancer.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cloridrato de Erlotinib , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Substrato Quinase C Rico em Alanina Miristoilada , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA