Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Curr Neurol Neurosci Rep ; 23(11): 645-656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751050

RESUMO

PURPOSE OF REVIEW: While the benefits of palliative care for patients with cancer are well established, palliative care in neuro-oncology is still in its early stages. However, in recent years, there has been increasing attention drawn to the need for better palliative care for patients with brain tumors. RECENT FINDINGS: There is a growing body of literature demonstrating the high symptom burden and significant supportive care and information needs of these patients and their caregivers. In the area of caregiver needs, the last 3 years has seen a more rapid growth in recognizing and characterizing these needs. However, there remains a knowledge gap regarding the optimal means of addressing these needs. In this article, we outline important recent advances in the literature on palliative care for patients with brain tumors and highlight areas in need of greater attention and investigation.


Assuntos
Neoplasias Encefálicas , Cuidados Paliativos , Humanos , Qualidade de Vida , Neoplasias Encefálicas/terapia , Cuidadores
2.
Antibodies (Basel) ; 12(3)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606434

RESUMO

Paraneoplastic antibody syndromes result from the anti-tumor antibody response against normal antigens ectopically expressed by tumor cells. Although this antibody response plays an important role in helping clear a nascent or established tumor, the engagement of antigens expressed in healthy tissues can lead to complex clinical syndromes with challenging diagnosis and management. The majority of known paraneoplastic antibody syndromes have been found to affect the central and peripheral nervous system. The present review provides an update on the pathophysiology of paraneoplastic neurologic syndromes, as well as recommendations for their diagnosis and treatment.

4.
Methods Mol Biol ; 2689: 27-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37430044

RESUMO

Single-cell analysis of cell phenotypic information such as surface protein expression and nucleic acid content is essential for understanding heterogeneity within cell populations. Here the design and use of a dielectrophoresis-assisted self-digitization (SD) microfluidics chip is described; it captures single cells in isolated microchambers with high efficiency for single-cell analysis. The self-digitization chip spontaneously partitions aqueous solution into microchambers through a combination of fluidic forces, interfacial tension, and channel geometry. Single cells are guided to and trapped at the entrances of microchambers by dielectrophoresis (DEP) due to local electric field maxima created by an externally applied AC voltage. Excess cells are flushed away, and trapped cells are released into the chambers and prepared for in situ analysis by turning off the external voltage, by running reaction buffer through the chip, and by sealing the chambers with a flow of an immiscible oil phase through the surrounding channels. The use of this device in single-cell analysis is demonstrated by performing single-cell nucleic acid quantitation based on loop-mediated isothermal amplification (LAMP). This platform provides a powerful new tool for single-cell research pertaining to drug discovery. For example, the single-cell genotyping of cancer-related mutant gene observed from the digital chip could be useful biomarker for targeted therapy.


Assuntos
Eletroforese , Dispositivos Lab-On-A-Chip , Microfluídica , Análise de Célula Única , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Células K562 , Humanos , Genes abl/genética , Expressão Gênica , Perfilação da Expressão Gênica , Eletroforese/instrumentação
5.
Anal Chem ; 95(28): 10492-10497, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37403691

RESUMO

Immunophenotyping of vesicles, such as extracellular vesicles (EVs), is essential to understanding their origin and biological role. We previously described a custom-built flow analyzer that utilizes a gravity-driven flow, high numerical aperture objective, and micrometer-sized flow channels to reach the sensitivity needed for fast multidimensional analysis of the surface proteins of EVs, even down to the smallest EVs (e.g., ∼30-40 nm). It is difficult to flow focus small EVs, and thus, the transiting EVs exhibit a distribution in particle velocities due to the laminar flow. This distribution of vesicle velocities leads to potentially incorrect results when immunophenotyping nanometer-sized vesicles using cross-correlation analysis (Xcorr), as the order of appearance of the vesicles might not be the same at different spatially offset laser excitation regions. Here, we describe an alternative cross-correlation analysis strategy (Scorr), which uses information on particle transit time across the laser excitation beam width to improve multicolor colocalization in single-vesicle immunoprofiling. We tested the performance of the algorithm for colocalization analysis of multicolor nanobeads and EVs experimentally and via simulations and found that Scorr improved both the efficiency and accuracy of colocalization versus Xcorr. As shown from Monte Carlo simulations, Scorr provided an ∼1.2-4.7-fold increase in the number of colocalized peaks and ensured negligible colocalization of peaks. In silico results were in good agreement with experimental data, which showed an increase in colocalized peaks of ∼1.3-2.5-fold and ∼1.2-2-fold for multicolor beads and EVs, respectively.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo/métodos , Vesículas Extracelulares/metabolismo , Luz , Imunofenotipagem
6.
RSC Adv ; 13(22): 15121-15125, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37223645

RESUMO

Semiconducting polymer dots (Pdots) with both narrow-band absorption and emission are desirable for multiplexed bioassay applications, but such Pdots with absorption peaks beyond 400 nm are difficult to achieve. Here we describe a donor-energy transfer unit-acceptor (D-ETU-A) design strategy to produce a BODIPY-based Pdot that exhibits simultaneously narrow absorption and emission bands. A green BODIPY (GBDP) unit was employed as the main building block of the polymer backbone, conferring a strong, narrow-band absorption around 551 nm. An NIR720 acceptor provides narrow-band NIR emission. The small Stokes shift of the GBDP donor allows introduction of a benzofurazan-based ETU, resulting in a ternary Pdot with a fluorescence quantum yield of 23.2%, the most efficient yellow-laser excitable Pdot. Due to the strong absorbance band centered at 551 nm and weak absorbance at 405 nm and 488 nm, the Pdot showed high single-particle brightness when excited by a 561 nm (yellow) laser, and selective yellow laser excitation when used to label MCF cells, with much greater brightness when excited at 561 nm than at 405 nm or 488 nm.

7.
J Phys Chem B ; 127(12): 2701-2707, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944080

RESUMO

Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique dSTORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by dSTORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by dSTORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).


Assuntos
Vesículas Extracelulares , Nanopartículas , Imagem Individual de Molécula , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Imagem Individual de Molécula/métodos
8.
Cancer Res Commun ; 3(1): 130-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968223

RESUMO

Purpose: The treatment of glioblastoma (GBM) poses challenges. The use of immune checkpoint inhibition (ICI) has been disappointing as GBM is characterized by low mutational burden and low T-cell infiltration. The combination of ICI with other treatment modalities may improve efficacy. Patient and Methods: Patients with recurrent GBM were treated with avelumab, a human IgG1 antibody directed against PD-L1 (part A), or avelumab within a week after laser interstitial thermal therapy (LITT) and continuation of avelumab (part B). Bevacizumab was allowed to be combined with ICI to spare steroid use. The primary objective was to characterize the tolerability and safety of the regimens. The secondary objectives included overall survival, progression-free survival (PFS), signatures of plasma analytes, and immune cells. Results: A total of 12 patients (median age 64; range, 37-73) enrolled, five in part A and seven in part B. Two serious adverse events occurred in the same patient, LITT treated, not leading to death. The median survival from enrollment was 13 months [95% confidence interval (CI), 4-16 months] with no differences for part A or B. The median PFS was 3 months (95% CI, 1.5-4.5 months). The decrease in MICA/MICB, γδT cells, and CD4+ T cell EMRA correlated with prolonged survival. Conclusions: Avelumab was generally well tolerated. Adding bevacizumab to ICI may be beneficial by lowering cytokine and immune cell expression. The development of this combinatorial treatment warrants further investigation. Exploring the modulation of adaptive and innate immune cells and plasma analytes as biomarker signatures may instruct future studies in this dismal refractory disease. Significance: Our phase I of PD-L1 inhibition combined with LITT and using bevacizumab to spare steroids had a good safety profile for recurrent GBM. Developing combinatory treatment may help outcomes. In addition, we found significant immune modulation of cytokines and immune cells by bevacizumab, which may enhance the effect of ICI.


Assuntos
Glioblastoma , Humanos , Pessoa de Meia-Idade , Bevacizumab/efeitos adversos , Glioblastoma/tratamento farmacológico , Anticorpos Monoclonais , Fator A de Crescimento do Endotélio Vascular , Antígeno B7-H1
10.
Angew Chem Int Ed Engl ; 62(8): e202217889, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36581589

RESUMO

The spatial resolution of single-molecule localization microscopy is limited by the photon number of a single switching event because of the difficulty of correlating switching events dispersed in time. Here we overcome this limitation by developing a new class of photoswitching semiconducting polymer dots (Pdots) with structured and highly dispersed single-particle spectra. We imaged the Pdots at the first and the second vibronic emission peaks and used the ratio of peak intensities as a spectral coding. By correlating switching events using the spectral coding and performing 4-9 frame binning, we achieved a 2-3 fold experimental resolution improvement versus conventional superresolution imaging. We applied this method to count and map SV2 and proton ATPase proteins on synaptic vesicles (SVs). The results reveal that these proteins are trafficked and organized with high precision, showing unprecedented level of detail about the composition and structure of SVs.


Assuntos
Pontos Quânticos , Semicondutores , Proteínas de Membrana , Vesículas Sinápticas , Pontos Quânticos/química , Diagnóstico por Imagem , Polímeros/química , Corantes Fluorescentes/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-36361376

RESUMO

BACKGROUND: Acceptance of vaccination in both healthcare professionals and the general public in the community is vital for efficacious control of the virus. Vaccine acceptance associates with many factors. Little research has been dedicated to examining attitudes and behaviors of healthcare professionals and community stakeholders regarding COVID-19 vaccine acceptance in Hong Kong. METHODS: An online cross-sectional survey was sent between February and April 2021 (N = 512). Multivariable regression modeling was used to identify associated variables with outcomes using adjusted odds ratios (AOR) and 95% of confidence intervals (CI). RESULTS: Two demographic variables-age group of over 40 years old (40-59: ORm = 3.157, 95% CI = 2.090-4.467; 60 or over: ORm = 6.606, 95% CI = 2.513-17.360) and those who had previously received a flu vaccination (ORm = 1.537, 95% CI = 1.047-2.258)-were found to be associated with high vaccine intent. Adjusting for these two variables, the results showed that five factors on knowledge variables as perceived benefits for vaccine intent were statistically significant: "Closed area and social gathering are the major ways of SAR-CoV-2 transmission" (AOR = 4.688, 95% CI = 1.802-12.199), "The vaccine can strengthen my immunity against COVID-19, so as to reduce the chance of being infected with it" (AOR = 2.983, 95% CI = 1.904-4.674), "The vaccine can lower the risk of transmitting the viruses to my family and friends" (AOR = 2.276, 95% CI = 1.508-3.436), "The benefits of COVID-19 vaccination outweigh its harm" (AOR = 3.913, 95% CI = 2.618-5.847) and "Vaccination is an effective way to prevent COVID-19" (AOR = 3.810, 95% CI = 2.535-5.728). CONCLUSIONS: High vaccine intent was associated with age and having previously received a flu vaccination. Knowledge and attitudes of healthcare professionals and community stakeholders were associated with high vaccine intent. Training and continuing education programs for healthcare providers and community stakeholders focusing on the delivery of evidence-based data on the benefits of vaccination campaigns for populations to increase the vaccination rates is recommended.


Assuntos
COVID-19 , Vacinas contra Influenza , Humanos , Adulto , Estudos Transversais , Vacinas contra COVID-19/uso terapêutico , Aceitação pelo Paciente de Cuidados de Saúde , Hong Kong , Conhecimentos, Atitudes e Prática em Saúde , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Pessoal de Saúde
12.
Lab Chip ; 22(23): 4729-4734, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367074

RESUMO

Hot embossing is a cost-effective and flexible fabrication technology with high replication accuracy for feature sizes as small as 50 nm. Here we develop a reinforced polydimethylsiloxane (PDMS) mold for hot embossing of cyclic olefin polymer (COP) sheets in the fabrication of microfluidic chips and demonstrate the method by fabricating chips for automated sample digitization in digital nucleic acid assays. The PDMS is hardened by adding an investment powder as a dopant and is constrained with an aluminum frame to prevent lateral expansion during hot pressing. The reinforced PDMS mold demonstrated excellent performance in hot embossing (180 °C, 103 kPa, 5 min) for micropatterning COP sheets, with highly reproducible features as small as 10 µm (width of draining channel). In contrast, the microscale features were inconsistent and distorted when omitting either the investment powder or frame from the PDMS mold. COP chips were assembled by thermally bonding patterned and unpatterned COP sheets. We tested the performance of the COP chip for automated sample digitization in a digital LAMP assay used to quantify human papillomavirus-18 (HPV-18) DNA. A mixture of nucleic acid amplification reagents was loaded into the main channel of the chip using a syringe pump, then the solution was spontaneously partitioned into chambers (∼0.6 nL), which were then isolated by flowing oil through the chip. The digital LAMP assay produced accurately absolute quantitation of DNA at concentrations ranging from 10 to 1000 copies per µL. The strategy presented here provides a simple, low-cost method to prepare molds for hot embossing, which facilitates rapid validation of microfluidic designs.


Assuntos
Cicloparafinas , Ácidos Nucleicos , Humanos , Microfluídica/métodos , Polímeros , Pós , Dimetilpolisiloxanos
13.
Anal Chem ; 94(41): 14265-14272, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206033

RESUMO

Aberrant cerebral glucose metabolism is related to many brain diseases, especially brain tumor. However, it remains challenging to measure the dynamic changes in cerebral glucose. Here, we developed a near-infrared (NIR) optical transducer to sensitively monitor the glucose variations in cerebrospinal fluid in vivo. The transducer consists of an oxygen-sensitive nanoparticle combined with glucose oxidase (GOx), yielding highly sensitive NIR phosphorescence in response to blood glucose change. We demonstrated long-term continuous glucose monitoring by using the NIR transducer. After subcutaneous implantation, the glucose transducer provides a strong luminescence signal that can continuously monitor blood glucose fluctuations for weeks. By using the NIR emission of the transducer, we further observed abnormal dynamic changes in cerebrospinal fluid glucose and quantitatively assessed cerebral glucose uptake rates in transgenic mice bearing brain tumors. This study provides a promising method for the diagnosis of various metabolic diseases with altered glucose metabolism.


Assuntos
Neoplasias Encefálicas , Glucose , Animais , Glicemia , Automonitorização da Glicemia , Neoplasias Encefálicas/diagnóstico por imagem , Glucose Oxidase , Camundongos , Imagem Óptica , Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Transdutores
14.
iScience ; 25(8): 104653, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35958027

RESUMO

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.

15.
ACS Appl Mater Interfaces ; 14(11): 13631-13637, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258939

RESUMO

Semiconducting polymer dots (Pdots) are increasingly used in biomedical applications due to their extreme single-particle brightness, which results from their large absorption cross section (σ). However, the quantum yield (Φ) of Pdots is typically below 40% due to aggregation-induced self-quenching. One approach to reducing self-quenching is to use FRET between the donor (D) and acceptor (A) groups within a Pdot; however, Φ values of FRET-based Pdots remain low. Here, we demonstrate an approach to achieve ultrabright FRET-based Pdots with simultaneously high σ and Φ. The importance of self-quenching was revealed in a non-FRET Pdot: adding 30 mol % of a nonabsorbing polyphenyl to a poly(9,9-dioctylfluorene) (PFO) Pdot increased Φ from 13.4 to 71.2%, yielding an ultrabright blue-emitting Pdot. We optimized the brightness of FRET-based Pdots by exploring different D/A combinations and ratios with PFO and poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-phenylene)] (PFP) as donor polymers and poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(1,4-phenylene)] (PFPV) and poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT) as acceptor polymers, with a fixed concentration of poly(styrene-co-maleic anhydride) as surfactant polymer. Ultrabright blue-emitting Pdots possessing high Φ (73.1%) and σ (σR = σabs/σall, 97.5%) were achieved using PFP/PFPV Pdots at a low acceptor content (A/[D + A], 2.5 mol %). PFP/PFPV Pdots were 1.8 times as bright as PFO/PFPV Pdots due to greater coverage of acceptor absorbance by donor emission─a factor often overlooked in D/A pair selection. Ultrabright green-emitting PFO Pdots (Φ = 76.0%, σR = 92.5%) were obtained by selecting an acceptor (PFBT) with greater spectral overlap with PFO. Ultrabright red-emitting Pdots (Φ = 64.2%, σR = 91.0%) were achieved by blending PFO, PFBT, and PFTBT to create a cascade FRET Pdot at a D:A1:A2 molar ratio of 61:5:1. These blue, green, and red Pdots are among the brightest Pdots reported. This approach of using a small, optimized amount of FRET acceptor polymer with a large donor-acceptor spectral overlap can be generalized to produce ultrabright Pdots with emissions that span the visible spectrum.


Assuntos
Polímeros , Pontos Quânticos , Fenômenos Químicos , Semicondutores
16.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216131

RESUMO

Normal embryogenesis requires complex regulation and precision, which depends on multiple mechanistic details. Defective embryogenesis can occur by various mechanisms. Maintaining redox homeostasis is of importance during embryogenesis. NADPH, as produced from the action of glucose-6-phosphate dehydrogenase (G6PD), has an important role in redox homeostasis, serving as a cofactor for glutathione reductase in the recycling of glutathione from oxidized glutathione and for NADPH oxidases and nitric oxide synthases in the generation of reactive oxygen (ROS) and nitrogen species (RNS). Oxidative stress differentially influences cell fate and embryogenesis. While low levels of stress (eustress) by ROS and RNS promote cell growth and differentiation, supra-physiological concentrations of ROS and RNS can lead to cell demise and embryonic lethality. G6PD-deficient cells and organisms have been used as models in embryogenesis for determining the role of redox signaling in regulating cell proliferation, differentiation and migration. Embryogenesis is also modulated by anti-oxidant enzymes, transcription factors, microRNAs, growth factors and signaling pathways, which are dependent on redox regulation. Crosstalk among transcription factors, microRNAs and redox signaling is essential for embryogenesis.


Assuntos
Desenvolvimento Embrionário/fisiologia , Glucosefosfato Desidrogenase/metabolismo , Homeostase/fisiologia , Animais , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
17.
Anal Chem ; 94(4): 2195-2203, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35034435

RESUMO

Optical sensors have attracted a great deal of interest for glucose detection. However, their practical applications for continuous glucose monitoring are still constrained by operational reliability in subcutaneous tissues. Here, we show an implantable hydrogel platform embedded with luminescent polymer dots (Pdots) for sensitive and long-term glucose monitoring. We use Pdot transducer in a polyacrylamide hydrogel matrix to construct an implantable platform. The hydrogel-Pdot transducer showed bright luminescence with ratiometric response to glucose changes. The in vitro and in vivo sensitivities of the hydrogel implant were enhanced by varying the enzyme concentration and injection volume. After implantation, the hydrogel with Pdot transducer remained at the implanted site without migration for 1 month and can be removed from the subcutaneous tissue for further analysis. Our results indicate that the hydrogel-Pdot platform maintains the intrinsic sensing property with excellent stability during 1 month implantation, while fibrous capsule formation on the implant in some cases needs to be solved for long-term continuous glucose monitoring.


Assuntos
Hidrogéis , Polímeros , Glicemia/análise , Automonitorização da Glicemia , Glucose , Reprodutibilidade dos Testes , Transdutores
18.
Annu Rev Pathol ; 17: 387-402, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073168

RESUMO

Most cancer cases occur in low- and middle-income countries (LMICs). The sophisticated technical and human infrastructure needed for optimal diagnosis, treatment, and monitoring of cancers is difficult enough in affluent countries; it is especially challenging in LMICs. In Western, educated, industrial, rich, democratic countries, there is a growing emphasis on and success with precision medicine, whereby targeted therapy is directed at cancers based on the specific genetic lesions in the cancer. Can such precision approaches be delivered in LMICs? We offer some examples of novel partnerships and creative solutions that suggest that precision medicine may be possible in LMICs given heavy doses of will, creativity, and persistence and a little luck.


Assuntos
Países em Desenvolvimento , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Pobreza , Medicina de Precisão
19.
Methods Mol Biol ; 2393: 279-295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837185

RESUMO

Digital nucleic acid quantitation methods show excellent sensitivity and specificity for pathogen detection. Droplet digital PCR (ddPCR) is the most advanced digital nucleic acid quantitation method and has been commercialized, but is not suitable for many point-of-care applications due to its complex instrumentation. Here we describe a simple microfluidics-based self-digitization (SD) chip for quantifying nucleic acids at the point of care with minimal instrumentation. We demonstrate the clinical diagnostic capability of this platform by applying it to quantifying human viral DNA and RNA. SD chips with a range of well numbers and volumes are tested, and isothermal methods are used to amplify the DNA and RNA to a detectable level. Sample concentration is determined based on the measured volume in the wells and the number of wells with fluorescence greater than a threshold based on a Poisson distribution. Concentration measurements over the low concentration range of 0-100 molecules/µL showed a strong correlation (R2 = 0.99) with measurements using a real-time PCR assay, demonstrating the sensitivity and specificity of the SD chip platform.


Assuntos
DNA Viral/análise , RNA Viral/análise , DNA Viral/genética , Humanos , Microfluídica , Reação em Cadeia da Polimerase , RNA Viral/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-37284135

RESUMO

This report summarises the presentations and activities of the SELECTBIO Workshop on Rigor and Reproducibility in EV Research and Single EV Analysis held in San Diego, USA, in December 2021. The motivation for the session was the recognition that progress in the extracellular vesicle (EV) field is limited by the availability of rigorous and reproducible EV measurement tools. These tools are absolutely required for EVs to evolve from a research lab curiosity to something that will improve our ability to understand, diagnose, treat, and prevent disease. The program focused on guidelines for EV measurement and characterization as laid out in the recent MISEV2018 and MIFlowCyt-EV publications, their implementation in routine practice, and their continued evolution as new EV measurement technologies are introduced. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...