Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948783

RESUMO

Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary: A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.

2.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941607

RESUMO

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Assuntos
Neuroimunomodulação , Humanos , Animais , Intestinos/imunologia , Homeostase , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/metabolismo , Neurônios/imunologia , Neuropeptídeos/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo
3.
J Clin Invest ; 134(9)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690737

RESUMO

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Assuntos
Proteínas de Membrana , Nociceptores , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nociceptores/metabolismo , Gânglios Espinais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dor/metabolismo , Dor/genética , Transdução de Sinais , Masculino
4.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599172

RESUMO

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Assuntos
Imunidade Inata , Células Receptoras Sensoriais , Imunidade Inata/fisiologia , Neuroimunomodulação/fisiologia , Homeostase
5.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442711

RESUMO

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Gânglios Espinais/citologia , Células Receptoras Sensoriais/citologia , Pele/inervação
6.
Proc Natl Acad Sci U S A ; 121(11): e2322574121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451947

RESUMO

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Neuroimunomodulação , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína 1 Modificadora da Atividade de Receptores/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Imunidade Adaptativa
8.
J Allergy Clin Immunol ; 153(5): 1344-1354.e5, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336257

RESUMO

BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.


Assuntos
Basófilos , Dermatite Atópica , Interleucina-4 , Ovalbumina , Células Th2 , Animais , Basófilos/imunologia , Camundongos , Interleucina-4/imunologia , Interleucina-4/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Ovalbumina/imunologia , Células Th2/imunologia , Pele/imunologia , Pele/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Células Dendríticas/imunologia , Camundongos Transgênicos , Mastócitos/imunologia
9.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
10.
Pain ; 165(2): 392-403, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903298

RESUMO

ABSTRACT: Dental pulp tissue is densely innervated by afferent fibers of the trigeminal ganglion. When bacteria cause dental decay near the pulpal tissue, a strong neuronal and immune response occurs, creating pulpitis, which is associated with severe pain and pulp tissue damage. Neuroimmune interactions have the potential to modulate both the pain and pathological outcome of pulpitis. We first investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP), released from peptidergic sensory afferents, in dental pain and immune responses by using Calca knockout (Calca -/- ) and wild-type (Calca +/+ ) mice, in a model of pulpitis by creating a mechanical exposure of the dental pulp horn. We found that the neuropeptide CGRP, facilitated the recruitment of myeloid cells into the pulp while also increasing spontaneous pain-like behavior 20% to 25% at an early time point. Moreover, when we depleted neutrophils and monocytes, we found that there was 20% to 30% more sensory afferent loss and increased presence of bacteria in deeper parts of the tissue, whereas there was a significant reduction in mechanical pain response scores compared with the control group at a later time point. Overall, we showed that there is a crosstalk between peptidergic neurons and neutrophils in the pulp, modulating the pain and inflammatory outcomes of the disease.


Assuntos
Neuropeptídeos , Pulpite , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina , Polpa Dentária , Neurônios , Dor , Neurônios Aferentes/fisiologia
11.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995657

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Assuntos
Peptídeo Hidrolases , Prurido , Receptor PAR-1 , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Peptídeo Hidrolases/metabolismo , Prurido/microbiologia , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
12.
J Endod ; 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37678750

RESUMO

INTRODUCTION: During pulpitis, as bacteria penetrate deeper into the dentin and pulp tissue, a pulpal innate immune response is initiated. However, the kinetics of the immune response, how this relates to bacterial infiltration during pulpitis and an understanding of the types of immune cells in the pulp is limited. METHODS: Dental pulp exposure in the molars of mice was used as an animal model of pulpitis. To investigate the kinetics of immune response, pulp tissue was collected from permanent molars at different time points after injury (baseline, day 1, and day 7). Flow cytometry analysis of CD45+ leukocytes, including macrophages, neutrophils monocytes, and T cells, was performed. 16S in situ hybridization captured bacterial invasion of the pulp, and immunohistochemistry for F4/80 investigated spatial and morphological changes of macrophages during pulpitis. Data were analyzed using two-way ANOVA with Tukey's multiple comparisons. RESULTS: Bacteria mostly remained close to the injury site, with some expansion towards noninjured pulp horns. We found that F4/80+ macrophages were the primary immune cell population in the healthy pulp. Upon injury, CD11b + Ly6Ghigh neutrophils and CD11b + Ly6GintLy6Cint monocytes constituted 70-90% of all immune populations up to 7 days after injury. Even though there was a slight increase in T cells at day 7, myeloid cells remained the main drivers of the immune response during the seven-day time period. CONCLUSIONS: As bacteria proliferate within the pulp chamber, innate immune cells, including macrophages, neutrophils, and monocytes, predominate as the major immune populations, with some signs of transitioning to an adaptive immune response.

13.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609192

RESUMO

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use chronic two-photon imaging in awake mice and single-cell transcriptomics to demonstrate that in addition to these roles, the ChP is a complex immune organ that regulates brain inflammation. In a mouse meningitis model, neutrophils and monocytes accumulated in ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process, including the discovery of epithelial cells that transiently specialized to nurture immune cells, coordinate their recruitment, survival, and differentiation, and ultimately, control the opening/closing of the ChP brain barrier. Collectively, we provide a new conceptual understanding and comprehensive roadmap of neuroinflammation at the ChP brain barrier.

14.
J Neurosci ; 43(40): 6731-6744, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37643860

RESUMO

Pain from bacterial infection was believed to be the consequence of inflammation induced by bacterial products. However recent studies have shown that bacterial products can directly activate sensory neurons and induce pain. The mechanisms by which bacteria induce pain are poorly understood, but toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors are likely important integrators of pain signaling induced by bacteria. Using male and female mice we show that sensory neuron activation by bacterial lipopolysaccharides (LPS) is mediated by both TRPA1 and TLR4 and involves the mobilization of extracellular and intracellular calcium. We also show that LPS induces neuronal sensitization in a process dependent on TLR4 receptors. Moreover, we show that TLR4 and TRPA1 are both involved in sensory neurons response to LPS stimulation. Activation of TLR4 in a subset of sensory neurons induces TRPA1 upregulation at the cell membrane through vesicular exocytosis, contributing to the initiation of neuronal sensitization and pain. Collectively these data highlight the importance of sensory neurons to pathogen detection, and their activation by bacterial products like LPS as potentially important to early immune and nociceptive responses.SIGNIFICANCE STATEMENT Bacterial infections are often painful and the recent discovery that bacteria can directly stimulate sensory neurons leading to pain sensation and modulation of immune system have highlighted the importance of nervous system in the response to bacterial infection. Here, we showed that lipopolysaccharide, a major bacterial by-product, requires both toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors for neuronal activation and acute spontaneous pain, but only TLR4 mediates sensory neurons sensitization. Moreover, we showed for the first time that TLR4 sensitize sensory neurons through a rapid upregulation of TRPA1 via vesicular exocytosis. Our data highlight the importance of sensory neurons to pathogen detection and suggests that TLR4 would be a potential therapeutic target to modulate early stage of bacteria-induced pain and immune response.


Assuntos
Infecções Bacterianas , Canais de Potencial de Receptor Transitório , Animais , Feminino , Masculino , Camundongos , Infecções Bacterianas/metabolismo , Lipopolissacarídeos/farmacologia , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Receptor 4 Toll-Like/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1 , Regulação para Cima
15.
Cell Mol Immunol ; 20(11): 1259-1269, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37336989

RESUMO

The gastrointestinal tract is densely innervated by the peripheral nervous system and populated by the immune system. These two systems critically coordinate the sensations of and adaptations to dietary, microbial, and damaging stimuli from the external and internal microenvironment during tissue homeostasis and inflammation. The brain receives and integrates ascending sensory signals from the gut and transduces descending signals back to the gut via autonomic neurons. Neurons regulate intestinal immune responses through the action of local axon reflexes or through neuronal circuits via the gut-brain axis. This neuroimmune crosstalk is critical for gut homeostatic maintenance and disease resolution. In this review, we discuss the roles of distinct types of gut-innervating neurons in the modulation of intestinal mucosal immunity. We will focus on the molecular mechanisms governing how different immune cells respond to neural signals in host defense and inflammation. We also discuss the therapeutic potential of strategies targeting neuroimmune crosstalk for intestinal diseases.


Assuntos
Sistema Imunitário , Neurônios , Humanos , Neurônios/fisiologia , Inflamação , Homeostase , Fenômenos Fisiológicos Celulares
16.
bioRxiv ; 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37131664

RESUMO

Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.

17.
Cell Host Microbe ; 31(4): 593-603.e7, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37054679

RESUMO

The opportunistic pathogen Staphylococcus aureus frequently colonizes the inflamed skin of people with atopic dermatitis (AD) and worsens disease severity by promoting skin damage. Here, we show, by longitudinally tracking 23 children treated for AD, that S. aureus adapts via de novo mutations during colonization. Each patient's S. aureus population is dominated by a single lineage, with infrequent invasion by distant lineages. Mutations emerge within each lineage at rates similar to those of S. aureus in other contexts. Some variants spread across the body within months, with signatures of adaptive evolution. Most strikingly, mutations in capsule synthesis gene capD underwent parallel evolution in one patient and across-body sweeps in two patients. We confirm that capD negativity is more common in AD than in other contexts, via reanalysis of S. aureus genomes from 276 people. Together, these findings highlight the importance of the mutation level when dissecting the role of microbes in complex disease.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Criança , Humanos , Staphylococcus aureus/genética , Pele , Mutação
18.
Nature ; 615(7952): 472-481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859544

RESUMO

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Assuntos
Encéfalo , Meninges , Meningites Bacterianas , Neuroimunomodulação , Humanos , Encéfalo/imunologia , Encéfalo/microbiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meninges/imunologia , Meninges/microbiologia , Meninges/fisiopatologia , Dor/etiologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Meningites Bacterianas/complicações , Meningites Bacterianas/imunologia , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/patogenicidade , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
19.
Nature ; 615(7953): 660-667, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890237

RESUMO

Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.


Assuntos
Barreira Hematoencefálica , Encéfalo , Dinoprostona , Nasofaringe , Infecções por Orthomyxoviridae , Células Receptoras Sensoriais , Animais , Humanos , Camundongos , Comportamento Animal , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Tronco Encefálico/fisiopatologia , Dinoprostona/metabolismo , Ingestão de Líquidos , Ingestão de Alimentos , Influenza Humana/complicações , Influenza Humana/metabolismo , Movimento , Nasofaringe/inervação , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Células Receptoras Sensoriais/metabolismo , Taxa de Sobrevida
20.
Neuron ; 111(8): 1222-1240.e9, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36917977

RESUMO

Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Gasderminas , Camundongos Knockout , Neurônios Motores/metabolismo , Axônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...