Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672222

RESUMO

Retinal structural and functional changes in humans can be manifestations of different physiological or pathological conditions. Retinal imaging is the only way to directly inspect blood vessels and their pathological changes throughout the whole body non-invasively. Various quantitative analysis metrics have been used to measure the abnormalities of retinal microvasculature in the context of different retinal, cerebral and systemic disorders. Recently developed optical coherence tomography angiography (OCTA) is a non-invasive imaging tool that allows high-resolution three-dimensional mapping of the retinal microvasculature. The identification of retinal biomarkers from OCTA images could facilitate clinical investigation in various scenarios. We provide a framework for extracting computational retinal microvasculature biomarkers (CRMBs) from OCTA images through a knowledge-driven computerized automatic analytical system. Our method allows for improved identification of the foveal avascular zone (FAZ) and introduces a novel definition of vessel dispersion in the macular region. Furthermore, retinal large vessels and capillaries of the superficial and deep plexus can be differentiated, correlating with retinal pathology. The diagnostic value of OCTA CRMBs was demonstrated by a cross-sectional study with 30 healthy subjects and 43 retinal vein occlusion (RVO) patients, which identified strong correlations between OCTA CRMBs and retinal function in RVO patients. These OCTA CRMBs generated through this "all-in-one" pipeline may provide clinicians with insights about disease severity, treatment response and prognosis, aiding in the management and early detection of various disorders.

2.
Adv Ophthalmol Pract Res ; 3(2): 47-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846375

RESUMO

Background: Artesunate (ART), a member of the artemisinin family, possesses multi-properties, including anti-inflammation, anti-oxidation, and anti-tumor. ART was recently reported to show anti-neovascularization effect on the cornea, iris, and retina. Compared to the expensive anti-VEGF treatment, this versatile, economical treatment option is attractive in the ophthalmic field. The safety and toxicity profile of ART intravitreal application are in utmost need. Methods: In this study, immortalized microglial (IMG) cells were treated with ART to determine the safe concentrations without inducing overt inflammatory reactions. Reverse transcription-polymerase chain reaction analysis was used to detect the cytokine expressions in IMG cells in response to ART stimulation. Various doses of ART were intravitreally injected into the right eyes of C57BL/6 mice. Retinal function was tested by electroretinogram, and retinal ganglion cell (RGC) survival was evaluated by counting Brn3a stained cells in flat-mounted retinas at 7 days after ART injection. Results: ART below 5µM was safe for IMG cells in vitro. Both 2.5 and 5 â€‹µM ART treatment increased IL-10 gene expression in IMG cells while not changing IL-1ß, IL-6, TNF-α, and Arg-1. In the in vivo study, intravitreal injection of ART below 100 â€‹µM did not cause deterioration in the retinal function and RGC survival of the mouse eyes, while 1 â€‹mM ART treatment significantly attenuated both the scotopic and photopic b-wave amplitudes and impaired RGC survival. In addition, treatment with ART of 25, 50, and 100 â€‹µM significantly decreased TNF-α gene expression while ART of 100 â€‹µM significantly increased IL-10 in the mouse retina. Conclusions: Intravitreal injection of 100 â€‹µM ART could downregulate TNF-α while upregulate IL-10 in the mouse retina without causing retinal functional deterioration and RGC loss. ART might be used as anti-inflammatory agent for retinal disorders.

3.
Front Aging Neurosci ; 15: 1156265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469953

RESUMO

Introduction: Lycium barbarum glycopeptide (LbGp) is the main bioactive compound extracted from the traditional Chinese medicine. L. barbarum berries and has been proven to have numerous health benefits, including antioxidative, anti-inflammatory, anticancer, and cytoprotective activities. However, the antiaging effect of LbGp remains unknown. Methods: The lifespan and body movement of C. elegans were used to evaluate the effect of LbGp on lifespan and health span. The thrashing assay was used to determine the role of LbGp in Parkinson's disease. To investigate the mechanisms of LbGp-induced antiaging effects, we analyzed changes in lifespan, movement, and the expression of longevity-related genes in a series of worm mutants after LbGp treatment. Results: We found that LbGp treatment prolonged the lifespan and health span of C. elegans. Mechanistically, we found that LbGp could activate the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, as well as the nuclear receptor DAF-12, thereby upregulating longevity-related genes to achieve lifespan extension. In addition, we found that the lifespan extension induced by LbGp partially depends on mitochondrial function. Intriguingly, LbGp also ameliorated neurodegenerative diseases such as Parkinson's disease in a DAF-16-, SKN-1-, and HSF-1-dependent manner. Conclusion: Our work suggests that LbGp might be a viable candidate for the treatment and prevention of aging and age-related diseases.

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-992174

RESUMO

There is no fast-acting treatment strate-gies against Alzheimer's disease(AD),in particular dementia-related wandering.N,N-dimethyltryptamine(DMT)is a natural psychedelic that may have rapid-onset nootropic effects.In this study,5×FAD transgenic mice which recapitulated amyloid neuropathological features of AD received one single injection of 6 or 12 mg·kg-1 DMT and tested at 0.5,1,and 2 h thereafter in Y-maze for spatial memory.5×FAD transgenic mice exhibited pro-nounced decreases in time spent,number entered,and distance travelled in the novel arm of Y-maze.DMT at 12 mg·kg-1 partially or completely reversed the three behavioral indices at multiple time points,up to 2 h post injection.The rapid-onset behavioral improvement was consistent with pharmacokinetic analysis of DMT,showing approximately 30 min to reach the maximum concentra-tion in the brain tissue.The transgenic mice also displayed dramatically impaired hippocampal long-term potentiation(LTP),an electrophysiological feature of memory forma-tion and consolidation.DMT potently enhanced LTP and restored intracellular calcium activity,expression and phosphorylation of calcium/calmodulin-dependent protein kinase Ⅱ(CaMK Ⅱ)and AMPA-type glutamate receptor 1(GluR1),the two key calcium-activated mediators involved in LTP induction.Adenosine triphosphate(ATP)is purinergic signalling molecules that are involved in LTP induction and maintenance.DMT rapidly increased mito-chondrial ATP dynamics in in vivo and in vitro models.These results suggest that DMT rapidly improve spatial memory and hippocampal LTP by restoring the CaMK Ⅱ-GluR1 signaling pathway and mitochondrial ATP produc-tion.It may be served as a fast-acting nootropic agent for the treatment of AD in particular wandering.

5.
Life (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431052

RESUMO

Retinitis pigmentosa (RP) is a photoreceptor-degenerating disease with no effective treatment. Trans-corneal electrical stimulation has neuroprotective effects in degenerating retinas, but repeated applications cause corneal injury. To avoid the risk of corneal damage, here we tested whether repetitive trans-sclera electrical stimulation (TsES) protects degenerating retinas in rd10 mice, a model of RP. At postnatal day 20 (P20), the right eyes of rd10 mice were exposed to 30 min of TsES daily or every other day till P25, at the amplitude of 50 or 100 µA, with zero current as the sham. Immunostaining, multi-electrode-array (MEA) recording, and a black-and-white transition box were applied to examine the morphological and functional changes of the treated retina. Functionally, TsES modified the retinal light responses. It also reduced the high spontaneous firing of retinal ganglion cells. TsES at 100 µA but not 50 µA increased the light sensitivities of ganglion cells as well as their signal-to-noise ratios. TsES at 100 µA increased the survival of photoreceptors without improving the visual behavior of rd10 mice. Our data suggest that repetitive TsES improves the retinal function of rd10 mice at the early degenerating stage, therefore, it might be an effective long-term strategy to delay retinal degeneration in RP patients.

6.
Adv Ophthalmol Pract Res ; 2(2): 100060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37846384

RESUMO

Background: In the last two decades, electrical stimulation (ES) has been tested in patients with various eye diseases and shows great treatment potential in retinitis pigmentosa and optic neuropathy. However, the clinical application of ES in ophthalmology is currently limited. On the one hand, optimization and standardization of ES protocols is still an unmet need. On the other hand, poor understanding of the underlying mechanisms has hindered clinical exploitation. Main Text: Numerous experimental studies have been conducted to identify the treatment potential of ES in eye diseases and to explore the related cellular and molecular mechanisms. In this review, we summarized the in vitro and in vivo evidence related to cellular and tissue response to ES in eye diseases. We highlighted several pathways that may be utilized by ES to impose its effects on the diseased retina. Conclusions: Therapeutic effect of ES in retinal degenerative diseases might through preventing neuronal apoptosis, promoting neuronal regeneration, increasing neurotrophic factors production in Müller cells, inhibiting microglial activation, enhancing retinal blood flow, and modulating brain plasticity. Future studies are suggested to analyse changes in specific retinal cells for optimizing the treatment parameters and choosing the best fit ES delivery method in target diseases.

7.
Neural Regen Res ; 17(1): 203-209, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100457

RESUMO

Lycium barbarum (LB) is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions, such as antioxidation, neuroprotection, and immune modulation. One of the main mechanisms of Alzheimer's disease is that microglia activated by amyloid beta (Aß) transform from the resting state to an M1 state and release pro-inflammatory cytokines to the surrounding environment. In the present study, immortalized microglial cells were pretreated with L. barbarum extract for 1 hour and then treated with oligomeric Aß for 23 hours. The results showed that LB extract significantly increased the survival of oligomeric Aß-induced microglial cells, downregulated the expression of M1 pro-inflammatory markers (inducible nitric oxide synthase, tumor necrosis factor α, interleukin-6, and interleukin-1ß), and upregulated the expression of M2 anti-inflammatory markers (arginase-1, chitinase-like protein 3, and interleukin-4). LB extract also inhibited the oligomeric Aß-induced secretion of tumor necrosis factor α, interleukin-6, and interleukin-1ß in microglial cells. The results of in vitro cytological experiments suggest that, in microglial cells, LB extract can inhibit oligomeric Aß-induced M1 polarization and concomitant inflammatory reactions, and promote M2 polarization.

8.
Brain ; 144(9): 2759-2770, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34428276

RESUMO

The molecular link between amyloid-ß plaques and neurofibrillary tangles, the two pathological hallmarks of Alzheimer's disease, is still unclear. Increasing evidence suggests that amyloid-ß peptide activates multiple regulators of cell cycle pathways, including transcription factors CDKs and E2F1, leading to hyperphosphorylation of tau protein. However, the exact pathways downstream of amyloid-ß-induced cell cycle imbalance are unknown. Here, we show that PAX6, a transcription factor essential for eye and brain development which is quiescent in adults, is increased in the brains of patients with Alzheimer's disease and in APP transgenic mice, and plays a key role between amyloid-ß and tau hyperphosphorylation. Downregulation of PAX6 protects against amyloid-ß peptide-induced neuronal death, suggesting that PAX6 is a key executor of the amyloid-ß toxicity pathway. Mechanistically, amyloid-ß upregulates E2F1, followed by the induction of PAX6 and c-Myb, while Pax6 is a direct target for both E2F1 and its downstream target c-Myb. Furthermore, PAX6 directly regulates transcription of GSK-3ß, a kinase involved in tau hyperphosphorylation and neurofibrillary tangles formation, and its phosphorylation of tau at Ser356, Ser396 and Ser404. In conclusion, we show that signalling pathways that include CDK/pRB/E2F1 modulate neuronal death signals by activating downstream transcription factors c-Myb and PAX6, leading to GSK-3ß activation and tau pathology, providing novel potential targets for pharmaceutical intervention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fator de Transcrição PAX6/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
PLoS One ; 16(8): e0255362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34379663

RESUMO

OBJECTIVE: To assess retinal microvascular network impairments in the eyes of mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients with optical coherence tomography angiography (OCTA). DESIGN: Systematic review and meta-analysis. METHODS: A literature search was conducted in the PubMed and EMBASE databases to identify relevant studies detecting retinal microvascular attenuation among AD, MCI patients and cognitively healthy controls (HCs) by OCTA. Data were extracted by Review Manager V.5.4 and Stata V.14.0. RESULTS: Eight investigations were included in this meta-analysis, with 150 AD patients, 195 MCI patients and 226 HCs were eligible for meta-analysis. Evidence based on these studies demonstrated that there was a significantly decreased vessel density (VD) of the Optovue group in superficial capillary plexus (SCP): WMD = -2.26, 95% CI: -3.98 to -0.55, p = 0.01; in deep capillary plexus (DCP): WMD = -3.40, 95% CI: -5.99 to -0.81, p = 0.01, VD of the Zeiss group in SCP:WMD = -0.91, 95% CI: -1.79 to -0.02, p = 0.05 and an enlarged fovea avascular zone (FAZ):WMD = 0.06, 95% CI: 0.01 to 0.11, P = 0.02 in OCTA measurements of MCI patients. Additionally, in OCTA measurements of AD patients, there was a significantly decreased VD in the SCP: WMD = -1.88, 95% CI: -2.7 to -1.07, p<0.00001. In contrast, there was no significant decrease in DCP nor enlargement of FAZ in AD patients. CONCLUSION: Retinal microvascular alternations could be optimally screened in MCI patients detected by OCTA, which could be a warning sign of relative changes in the MCI before progressing to AD. Retinal microvasculature changes worth further investigation in larger scale clinical trials.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Angiofluoresceinografia , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia de Coerência Óptica
10.
Front Neurosci ; 15: 681831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366774

RESUMO

One of the major challenges in treating Alzheimer's disease (AD) is its early diagnosis. Increasing data from clinical and animal research indicate that the retina may facilitate an early diagnosis of AD. However, a previous study on the 5xFAD (a fast AD model), showing retinal changes before those in the brain, has been questioned because of the involvement of the retinal degeneration allele Pde6brd1. Here, we tested in parallel, at 4 and 6 months of age, both the retinal and the brain structure and function in a 5xFAD mouse line that carries no mutation of rd1. In the three tested regions of the 5xFAD brain (hippocampus, visual cortex, and olfactory bulb), the Aß plaques were more numerous than in wild-type (WT) littermates already at 4 months, but deterioration in the cognitive behavioral test and long-term potentiation (LTP) lagged behind, showing significant deterioration only at 6 months. Similarly in the retina, structural changes preceded functional decay. At 4 months, the retina was generally normal except for a thicker outer nuclear layer in the middle region than WT. At 6 months, the visual behavior (as seen by an optomotor test) was clearly impaired. While the full-field and pattern electroretinogram (ERG) responses were relatively normal, the light responses of the retinal ganglion cells (measured with multielectrode-array recording) were decreased. Structurally, the retina became abnormally thick with few more Aß plaques and activated glia cells. In conclusion, the timeline of the degenerative processes in the retina and the brain is similar, supporting the use of non-invasive methods to test the retinal structure and function to reflect changes in the brain for early AD diagnosis.

11.
Transl Vis Sci Technol ; 10(8): 7, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251424

RESUMO

Purpose: To study the in vitro effect of vitamin D3 on the healing response of human Tenon's fibroblasts (HTF) and its possible role in preventing excessive postoperative subconjunctival fibrosis. Methods: Effect of vitamin D3 on cytotoxicity and cell survival of primary cultured HTF was measured by lactate dehydrogenase and PrestoBlue assays, respectively. Proliferation and migration of vitamin D3-treated HTF (D3-HTF) was determined by CyQUANT proliferation and scratch assay, respectively. The mRNA expression profiles of control-HTF and D3-HTF from six subjects (three with glaucoma and long-term use of topical medications, three with primary pterygium) were assessed by RNA sequencing analyses to identify potential biomarkers for the inhibitory effect on HTF by vitamin D3. Validation of these biomarkers and their potential pathways were performed by quantitative real-time polymerase chain reaction (qRT-PCR) detection. Results: Pure monolayers of HTF from controls (retinal detachment or squint surgeries), pterygium, and glaucoma subjects were successfully prepared and passaged. Proliferation and migration of pterygium and glaucoma HTF were inhibited by vitamin D3 in a dose-dependent manner, and without cytotoxicity or decrease in cellular viability with concentrations up to 10 µM. The qRT-PCR results were consistent with the transcriptome analyses, vitamin D3 appears to enhance CYP24A1, SHE, KRT16 but suppresses CILP expression in HTF. Conclusions: Vitamin D3 can inhibit the in vitro activity of HTF without compromising cellular survivability at concentration up to 10 µM. This has potential clinical application for improving the outcome of pterygium and filtering surgeries. Translational Relevance: Vitamin D3 can suppress the in vitro proliferation, migration, and transdifferentiation of human Tenon's fibroblasts, without the cytotoxicity of mitomycin-C, the current standard antifibrotic agent in clinical use.


Assuntos
Colecalciferol , Pterígio , Células Cultivadas , Colecalciferol/farmacologia , Fibroblastos , Humanos , Mitomicina , Pterígio/tratamento farmacológico
12.
Neuromodulation ; 24(6): 992-1002, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33984873

RESUMO

OBJECTIVES: To systematically identify and summarize the effectiveness and the parameters of electrical stimulation (ES) for the preservation of visual function in major retinal degeneration and optic neuropathy. MATERIALS AND METHODS: A systematic review of clinical studies, using ES therapy in patients with blind leading retinal degenerations, including retinitis pigmentosa (RP), age-related macular degeneration (AMD), glaucoma, retinal vein occlusion (RVO), retinal artery occlusion (RAO), and optic neuropathy was conducted. PubMed, EMBASE, Cochrane Library, and Web of Science were searched for relevant interventional studies including randomized controlled trials (RCTs) and observational studies. RESULTS: A total of 10 RCTs and 15 observational studies were included. Transcorneal ES (TcES), transpalpebral ES (TpES), transdermal ES (TdES), and repetitive transorbital alternating current stimulation (rtACS) were used for the treatment of the patients. ES using 20 Hz biphasic pulses with current strength at 150%-200% of individual electrical phosphene threshold (EPT) for RP patients showed improved retinal function detected by visual acuity (VA), visual field (VF), or electrical retinal graphs (ERG). rtACS on patients with optic neuropathy showed significant preservation of VA and VF. Clinical studies on AMD, RAO, and glaucoma indicated promising protective effects of ES on the visual function, though the amount of evidence is limited. CONCLUSIONS: ES treatment has promising therapeutic effects on RP and optic neuropathy. More large-scale RCT studies should be conducted to elucidate the potential of ES, especially on AMD, RAO, and glaucoma. A comparison of the effects by different ES methods in the same disease populations is still lacking. Parameters of the electric current and sensitive detection method should be optimized for the evaluation of ES treatment effects in future studies.


Assuntos
Doenças do Nervo Óptico , Degeneração Retiniana , Estimulação Elétrica , Humanos , Acuidade Visual , Campos Visuais
13.
Front Aging Neurosci ; 13: 788798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095474

RESUMO

In Alzheimer's disease (AD), amyloid ß deposition-induced hippocampal synaptic dysfunction generally begins prior to neuronal degeneration and memory impairment. Lycium barbarum extracts (LBE) have been demonstrated to be neuroprotective in various animal models of neurodegeneration. In this study, we aimed to investigate the effects of LBE on the synapse loss in AD through the avenue of the retina in a triple transgenic mouse model of AD (3xTg-AD). We fed 3xTg-AD mice with low (200 mg/kg) or high (2 g/kg) dose hydrophilic LBE daily for 2 months from the starting age of 4- or 6-month-old. For those started at 6 month age, at 1 month (though not 2 months) after starting treatment, mice given high dose LBE showed a significant increase of a wave and b wave in scotopic ERG. After 2 months of treatment with high dose LBE, calpain-2, calpain-5, and the oxidative RNA marker 8-OHG were downregulated, and presynaptic densities in the inner plexiform layer but not the outer plexiform layer of the retina were significantly increased, suggesting the presynaptic structure of retina was preserved. Our results indicate that LBE feeding may preserve synapse stability in the retina of 3xTg-AD mice, probably by decreasing both oxidative stress and intracellular calcium influx. Thus, LBE might have potential as a neuroprotectant for AD through synapse preservation.

14.
Biomaterials ; 268: 120585, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307364

RESUMO

Neural stem cells (NSCs) transplantation at the injury site of central nerve system (CNS) makes it possible for neuroregeneration. Long-term cell survival and low proliferation, differentiation, and migration rates of NSCs-graft have been the most challenging aspect on NSCs application. New multichannel electrical stimulation (ES) device was designed to enhance neural stem cells (NSCs) differentiation into mature neurons. Compared to controls, ES at nanoscale topography enhanced the expression of mature neuronal marker, growth of the neurites, concentration of BDNF and electrophysiological activity. RNA sequencing analysis validated that ES promoted NSC-derived neuronal differentiation through enhancing autophagy signaling. Emerging evidences showed that insufficient or excessive autophagy contributes to neurite degeneration. Excessive ES current were able to enhance neuronal autophagy, the neuronal cells showed poor viability, reduced neurite outgrowth and electrophysiological activity. Well-controlled autophagy not only protects against neurodegeneration, but also regulates neurogenesis. Current NSC treatment protocol efficiently enhanced NSC differentiation, maturation and survival through combination of proper ES condition followed by balance of autophagy level in the cell culture system. The successful rate of such protreated NSC at injured CNS site should be significantly improved after transplantation.


Assuntos
Células-Tronco Neurais , Autofagia , Diferenciação Celular , Células Cultivadas , Estimulação Elétrica , Neurogênese
15.
ACS Appl Mater Interfaces ; 12(47): 53150-53163, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33179500

RESUMO

Electrical stimulation (ES) can be used to manipulate recovery after peripheral nerve injuries. Although biomaterial-based strategies have already been implemented to gain momentum for ES and engineer permissive microenvironments for neural regeneration, the development of biomaterials for specific stimuli-responsive modulation of neural cell properties remains a challenge. Herein, we homogeneously incorporate pristine carbon nanotubes into a functional self-assembling peptide to prepare a hybrid hydrogel with good injectability and conductivity. Two-dimensional (on the surface) and three-dimensional (within the hybrid hydrogel) culturing experiments demonstrate that ES promotes axon outgrowth and Schwann cell (SC) migration away from dorsal root ganglia spheres, further revealing that ES-enhanced interactions between SCs and axons result in improved myelination. Thus, our study not only advances the development of tailor-made materials but also provides useful insights into comprehensive approaches for promoting nerve growth and presents a practical strategy of repairing peripheral nerve injuries.


Assuntos
Hidrogéis/química , Nanotubos de Carbono/química , Animais , Axônios/metabolismo , Estimulação Elétrica , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Hidrogéis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Peptídeos/química , Ratos , Ratos Sprague-Dawley
16.
Invest Ophthalmol Vis Sci ; 61(5): 55, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32460319

RESUMO

Purpose: To investigate the differential expression of cytokines and growth factors in the cornea and aqueous humor after small incision lenticule extraction (SMILE) compared with femtosecond LASIK (FS-LASIK) using rabbit model. Methods: Sixteen eyes of 16 rabbits in each group underwent SMILE or FS-LASIK with refractive correction of -6.00 DS/-1.00 DC. Eight additional rabbits served as controls. Pre- and 24 hours, 1 week, 1 month, and 3 months postoperatively, slit-lamp and anterior segment optical coherence tomography were performed, followed by cornea and aqueous humor collection. Apoptosis and proliferation were evaluated with TUNEL assay and Ki-67 immunostaining, respectively. The mRNA and protein expression of cytokines and growth factors was determined by RT-qPCR and Western blotting, respectively. Cytokine levels in the aqueous humor were detected with ELISA. Results: Compared with FS-LASIK, SMILE induced less apoptosis and proliferation in the cornea within 1 week postoperatively. Levels of IL-1ß, TNF-α, and EGFR in the cornea were significantly increased after FS-LASIK compared with SMILE within 24 hours. Levels of IL-8 in the aqueous humor remained elevated until 1 week after FS-LASIK but not SMILE. TGF-ß1 level was elevated up to 1 month after both procedures, while BFGF level was kept high within 1 month after SMILE but not FS-LASIK. Conclusions: SMILE could induce significantly less acute inflammation than FS-LASIK in the cornea and aqueous humor. The differential expression of TGF-ß1 and BFGF between two procedures until 1 month might contribute to the post-SMILE delayed recovery and underline the importance of continued treatment postoperatively.


Assuntos
Humor Aquoso/metabolismo , Córnea/metabolismo , Córnea/cirurgia , Citocinas/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Ceratomileuse Assistida por Excimer Laser In Situ , Procedimentos Cirúrgicos Refrativos , Animais , Feminino , Período Pós-Operatório , Coelhos , Procedimentos Cirúrgicos Refrativos/métodos , Fatores de Tempo
17.
Cell Death Dis ; 10(11): 862, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723124

RESUMO

Retinoblastoma (RB) is the most common primary intraocular malignancy in children. Intravitreal chemotherapy achieves favorable clinical outcomes in controlling RB vitreous seeds, which are a common reason for treatment failure. Thus, a novel, effective and safe intravitreal chemotherapeutic drug is urgently required. The malaria drug artesunate (ART) recently demonstrated remarkable anticancer effects with mild side effects. The purpose of this study is to investigate the anti-RB efficacy, the underlying mechanism and the intraocular safety of ART. Herein, we verified that ART inhibits RB cell viability and induces cell apoptosis in a dose- and time-dependent manner. Microarray analysis revealed that Kruppel-like factor 6 (KLF6) was upregulated after ART treatment, and this was further confirmed by real-time PCR and western blot assays. Silencing of KLF6 expression significantly reversed ART-induced RB cell growth inhibition and apoptosis. Furthermore, ART activated mitochondria-mediated apoptosis of RB cells, while silencing KLF6 expression significantly inhibited this effect. In murine xenotransplantation models of RB, we further confirmed that ART inhibits RB tumor growth, induces tumor cell apoptosis and upregulates KLF6 expression. In addition, KLF6 silencing attenuates ART-mediated inhibition of tumor growth in vivo. Furthermore, we proved that intravitreal injection of ART in Sprague-Dawley (SD) rats is safe, with no obvious retinal function damage or structural disorders observed by electrophysiology (ERG), fundal photographs, fundus fluorescein angiography (FFA) or optical coherence tomography (OCT) examinations. Collectively, our study revealed that ART induces mitochondrial apoptosis of RB cells via upregulating KLF6, and our results may extend the application of ART to the clinic as an effective and safe intravitreal chemotherapeutic drug to treat RB, especially RB with vitreous seeds.


Assuntos
Artesunato/farmacologia , Proliferação de Células/efeitos dos fármacos , Fator 6 Semelhante a Kruppel/genética , Retinoblastoma/tratamento farmacológico , Animais , Antimaláricos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Ratos , Retinoblastoma/genética , Retinoblastoma/patologia , Ativação Transcricional/efeitos dos fármacos
18.
Theranostics ; 9(8): 2395-2410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149051

RESUMO

Rationale: Retinal ganglion cell (RGC) degeneration is extremely hard to repair or regenerate and is often coupled with mitochondrial dysfunction. Mesenchymal stem cells (MSCs)-based treatment has been demonstrated beneficial for RGC against degeneration. However, underlying mechanisms of MSC-provided RGC protection are largely unknown other than neuroprotective paracrine actions. In this study, we sought to investigate whether mitochondrial donation from induced pluripotent stem cell-derived MSC (iPSC-MSCs) could preserve RGC survival and restore retinal function. Methods: iPSC-MSCs were injected into the vitreous cavity of one eye in NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) knockout (KO) and wild type mice. Phosphate buffer saline (PBS) or rotenone treated iPSC-MSCs were injected as control groups. Retinal function was detected by flash electroretinogram (ERG). Whole-mount immunofluorescence (IF), morphometric analysis, confocal microscopy imaging, polymerase chain reaction (PCR) of the retinas were conducted to investigate mitochondrial transfer from human iPSC-MSCs to mouse retina. Quantitative mouse cytokine arrays were carried out to measure retinal inflammatory response under difference treatments. Results: RGC survival in the iPSC-MSC injected retina of Ndufs4 KO mice was significantly increased with improved retinal function. GFP labelled human mitochondria from iPSC-MSC were detected in the RGCs in the retina of Ndufs4 KO mice starting from 96 hours post injection. PCR result showed only human mitochondrial DNA without human nuclear DNA could be detected in the mouse retinas after iPSC-MSC treatment in Ndufs4 KO mice eye. Quantitative cytokine array analysis showed pro-inflammatory cytokines was also downregulated by this iPSC-MSC treatment. Conclusion: Intravitreal transplanted iPSC-MSCs can effectively donate functional mitochondria to RGCs and protect against mitochondrial damage-induced RGC loss.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Complexo I de Transporte de Elétrons/deficiência , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/terapia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Injeções Intravítreas , Camundongos , Camundongos Knockout , Resultado do Tratamento
19.
Exp Neurol ; 319: 112963, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31125549

RESUMO

Electrical stimulation (ES) has been applied in cell culture system to enhance neural stem cell (NSC) proliferation, neuronal differentiation, migration, and integration. According to the mechanism of its function, ES can be classified into induced electrical (EFs) and electromagnetic fields (EMFs). EFs guide axonal growth and induce directional cell migration, whereas EMFs promote neurogenesis and facilitates NSCs to differentiate into functional neurons. Conductive nanomaterials have been used as functional scaffolds to provide mechanical support and biophysical cues in guiding neural cell growth and differentiation and building complex neural tissue patterns. Nanomaterials may have a combined effect of topographical and electrical cues on NSC migration and differentiation. Electrical cues may promote NSC neurogenesis via specific ion channel activation, such as SCN1α and CACNA1C. To accelerate the future application of ES in preclinical research, we summarized the specific setting, such as current frequency, intensity, and stimulation duration used in various ES devices, as well as the nanomaterials involved, in this review with the possible mechanisms elucidated. This review can be used as a checklist for ES work in stem cell research to enhance the translational process of NSCs in clinical application.


Assuntos
Estimulação Elétrica , Células-Tronco Neurais/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Humanos , Nanoestruturas , Neurogênese , Transplante de Células-Tronco
20.
Neural Regen Res ; 14(9): 1494-1498, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089038

RESUMO

Artemisinin, also called qinghaosu, is originally derived from the sweet wormwood plant (Artemisia annua), which is used in traditional Chinese medicine. Artemisinin and its derivatives (artemisinins) have been widely used for many years as anti-malarial agents, with few adverse side effects. Interestingly, evidence has recently shown that artemisinins might have a therapeutic value for several other diseases beyond malaria, including cancers, inflammatory diseases, and autoimmune disorders. Neurodegeneration is a challenging age-associated neurological disorder characterized by deterioration of neuronal structures as well as functions, whereas neuroinflammation has been considered to be an underlying factor in the development of various neurodegenerative disorders, including Alzheimer's disease. Recently discovered properties of artemisinins suggested that they might be used to treat neurodegenerative disorders by decreasing oxidation, inflammation, and amyloid beta protein (Aß). In this review, we will introduce artemisinins and highlight the possible mechanisms of their neuroprotective activities, suggesting that artemisinins might have therapeutic potential in neurodegenerative disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...