Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(7): e202317102, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140766

RESUMO

Chirality transfer is essential to acquire helical hierarchical superstructures from the self-assembly of supramolecular materials. By taking advantage of chirality transfers at different length scales through intra-chain and inter-chain chiral interactions, helical phase (H*) can be formed from the self-assembly of chiral block copolymers (BCPs*). In this study, chiral triblock terpolymers, polystyrene-b-poly(ethylene oxide)-b-poly(L-lactide) (PS-PEO-PLLA), and polystyrene-b-poly(4-vinylpyridine)-b-poly(L-lactide) (PS-P4VP-PLLA) are synthesized for self-assembly. For PS-PEO-PLLA with an achiral PEO mid-block that is compatible with PLLA (chiral end-block), H* can be formed while the block length is below a critical value. By contrast, for the one with achiral P4VP mid-block that is incompatible with PLLA, the formation of H* phase would be suppressed regardless of the length of the mid-block, giving cylinder phase. Those results elucidate a new type of chirality transfer across the phase domain that is referred as cross-domain chirality transfer, providing complementary understanding of the chirality transfer at the interface of phase-separated domains.

2.
ACS Nano ; 17(16): 15678-15686, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37387522

RESUMO

Inspired by knobby starfish, this work demonstrates a bottom-up approach for fabricating a calcite single-crystal (CSC) with a diamond structure by exploiting the self-assembly of the block copolymer and corresponding templated synthesis. Similar to the knobby starfish, the diamond structure of the CSC gives rise to a brittle-to-ductile transition. Most interestingly, the diamond-structured CSC fabricated exhibits exceptional specific energy absorption and strength with lightweight character superior to natural materials and artificial counterparts from a top-down approach due to the nanosized effect. This approach provides the feasibility for creating mechanical metamaterials with the combined effects of the topology and nanosize on the mechanical performance.

3.
Acc Chem Res ; 55(15): 2033-2042, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849801

RESUMO

Through the morphological evolution to give highly optimized complex architectures at different length scales, fine-tuned textures for specific functions in living organisms can be achieved in nature such as a bone core with very complicated porous architecture to attain a significant structural efficiency attributed to delicately structured ligaments and density gradients. As inspired by nature, materials with periodic network structures (i.e., well-defined porous textures) in the nanoscale are appealing and promising for innovative properties. Biomimicking from nature, organic and/or inorganic nanonetworks can be synthetically fabricated, giving broadness and effectiveness when tuning the desired properties. Metamaterials are materials whose effective properties do not result from the bulk behavior of the constituent materials but rather mainly from their deliberate structuring. The performances of fabricating metamaterials will depend on the control of size, shape, order, and orientation of the forming textures. One of the appealing textures for the deliberate structuring is network architecture. Network materials possess self-supporting frameworks, open-cell character, high porosity, and large specific surface area, giving specific functions and complexity for diverse applications. As demonstrated by recent studies, exceptional mechanical performances such as negative thermal expansion, negative Poisson's ratio, and twisting under uniaxial forces can be achieved by the effect of the deliberate structuring with nanonetwork textures. In contrast to a top-down approach, a bottom-up approach is cost-effective, and also it can overcome the size limitation to reach nanoscale fabrication. It can be foreseen that network metamaterials with a feature size of tens of nanometers (referred as nanonetwork metamaterials) may provide new comprehension of the structure and property relationships for various materials. The self-assembly of block copolymers (BCPs) is one of the most used methods to build up well-ordered nanostructured phases from a bottom-up approach with precise control of size, shape, and orientation in the thin films for realistic applications. In this account, we summarize recent advancements in the fabrication of nanohybrids and nanoporous materials with well-ordered nanonetwork textures even with controlled helicity by combining block copolymer self-assembly and templated syntheses for mechanical and optical applications with superior properties beyond nature as metamaterials as well as chiral metamaterials with new properties for chiroptic applications such as chiral plasmonics, beam splitter, and negative refraction. The description of the fundamental facets of a nonconventional structure-property relationship with the characters of metamaterials and the state-of-the-art methodologies to fabricate nanonetworks using block copolymer self-assembly will stimulate research activities for the development of nanonetwork metamaterials with exceptional individual and multifunctional properties for futuristic devices.


Assuntos
Nanoestruturas , Polímeros , Nanoestruturas/química , Polímeros/química , Porosidade
4.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688050

RESUMO

A series of cubic network phases was obtained from the self-assembly of a single-composition lamellae (L)-forming block copolymer (BCP) polystyrene-block-polydimethylsiloxane (PS-b-PDMS) through solution casting using a PS-selective solvent. An unusual network phase in diblock copolymers, double-primitive phase (DP) with space group of [Formula: see text], can be observed. With the reduction of solvent evaporation rate for solution casting, a double-diamond phase (DD) with space group of [Formula: see text] can be formed. By taking advantage of thermal annealing, order-order transitions from the DP and DD phases to a double-gyroid phase (DG) with space group of [Formula: see text] can be identified. The order-order transitions from DP (hexapod network) to DD (tetrapod network), and finally to DG (trigonal planar network) are attributed to the reduction of the degree of packing frustration within the junction (node), different from the predicted Bonnet transformation from DD to DG, and finally to DP based on enthalpic consideration only. This discovery suggests a new methodology to acquire various network phases from a simple diblock system by kinetically controlling self-assembling process.

5.
Sci Adv ; 6(42)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33055164

RESUMO

Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (GA) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase. Here, by taking advantage of chirality transfer at different length scales, GA with controlled chirality can be achieved through the self-assembly of a chiral triblock terpolymer. With the homochiral evolution from monomer to multichain domain morphology through self-assembly, the triblock terpolymer composed of a chiral end block with a single-handed helical polymer chain gives the chiral network from the chiral end block having a particular handed network. Our real-space analyses reveal the preferred chiral sense of the network in the GA, leading to a chiral phase.

6.
IUCrJ ; 6(Pt 2): 259-266, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867923

RESUMO

The development of well ordered nanonetwork materials (in particular gyroid-structured materials) has been investigated using a block-copolymer template for templated electroless plating as an example system for the examination of network formation using X-ray scattering. By taking advantage of the nucleation and growth mechanism of templated electroless plating, gyroid-structured Au was successfully fabricated through the development of Au nanoparticles, then tripods and branched tripods, and finally an ordered network. Each stage in the development of the network phase could then be examined by combining real-space transmission electron microscopy observations with reciprocal-space small-angle X-ray scattering results. The fingerprint scattering profile of the building block for the network (i.e. the tripod of the gyroid) could be well fitted with the form factor of an effective sphere, and the diffraction results from the ordered network could thus be reasonably addressed. As a result, the examination of well ordered network materials can be simplified as the scattering from the form factor of a sphere convoluted with the nodes of its structure factor, providing a facile method of identifying the network phases from X-ray scattering data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...