Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 287, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797862

RESUMO

Periodontitis is a prevalent chronic inflammatory disease, which leads to gradual degradation of alveolar bone. The challenges persist in achieving effective alveolar bone repair due to the unique bacterial microenvironment's impact on immune responses. This study explores a novel approach utilizing Metal-Organic Frameworks (MOFs) (comprising magnesium and gallic acid) for promoting bone regeneration in periodontitis, which focuses on the physiological roles of magnesium ions in bone repair and gallic acid's antioxidant and immunomodulatory properties. However, the dynamic oral environment and irregular periodontal pockets pose challenges for sustained drug delivery. A smart responsive hydrogel system, integrating Carboxymethyl Chitosan (CMCS), Dextran (DEX) and 4-formylphenylboronic acid (4-FPBA) was designed to address this problem. The injectable self-healing hydrogel forms a dual-crosslinked network, incorporating the MOF and rendering its on-demand release sensitive to reactive oxygen species (ROS) levels and pH levels of periodontitis. We seek to analyze the hydrogel's synergistic effects with MOFs in antibacterial functions, immunomodulation and promotion of bone regeneration in periodontitis. In vivo and in vitro experiment validated the system's efficacy in inhibiting inflammation-related genes and proteins expression to foster periodontal bone regeneration. This dynamic hydrogel system with MOFs, shows promise as a potential therapeutic avenue for addressing the challenges in bone regeneration in periodontitis.


Assuntos
Regeneração Óssea , Quitosana , Sistemas de Liberação de Medicamentos , Hidrogéis , Estruturas Metalorgânicas , Periodontite , Periodontite/tratamento farmacológico , Hidrogéis/química , Regeneração Óssea/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Quitosana/química , Quitosana/análogos & derivados , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Dextranos/química , Masculino , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Preparações de Ação Retardada/química , Humanos
2.
Small ; : e2307350, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072806

RESUMO

Hydrogen (H2 ), the most abundant element in the universe, has the potential to address the challenges of energy security and climate change. However, due to the lack of a safe and efficient method for storing and delivering hydrogen, its practical application is still in its infancy stages. To overcome this challenge, a promising solution is demonstrated in the form of on-demand production of H2 using nano-Silicon (Si) powders. The method offers instantaneous production of H2 , yielding a volume of 1.3 L per gram of Si at room temperature. Moreover, the H2 production yield and the rate can be effectively controlled by adjusting the reaction pH value and temperatures. Additionally, liquid-phase transmission electron microscopy (LPTEM) is utilized in situ to demonstrate the entire reaction in real-time, wherein H2 bubble formation is observed and illustrated the gradual conversion of crystalline Si particles into amorphous oxides. Moreover, it is confirmed that the purity of the generated gas is 99.5% using gas chromatography mass spectrometry (GC-MS). These findings suggest a viable option for instant H2 production in portable fuel cells using Si cartridges or pellets.

3.
Biomedicines ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137420

RESUMO

Dental pulp pericytes are reported to have the capacity to generate odontoblasts and express multiple cytokines and chemokines that regulate the local immune microenvironment, thus participating in the repair of dental pulp injury in vivo. However, it has not yet been reported whether the transplantation of exogenous pericytes can effectively treat pulpitis, and the underlying molecular mechanism remains unknown. In this study, using a lineage-tracing mouse model, we showed that most dental pulp pericytes are derived from cranial neural crest. Then, we demonstrated that the ablation of pericytes could induce a pulpitis-like phenotype in uninfected dental pulp in mice, and we showed that the significant loss of pericytes occurs during pupal inflammation, implying that the transplantation of pericytes may help to restore dental pulp homeostasis during pulpitis. Subsequently, we successfully generated pericytes with immunomodulatory activity from human pluripotent stem cells through the intermediate stage of the cranial neural crest with a high level of efficiency. Most strikingly, for the first time we showed that, compared with the untreated pulpitis group, the transplantation of hPSC-derived pericytes could substantially inhibit vascular permeability (the extravascular deposition of fibrinogen, ** p < 0.01), alleviate pulpal inflammation (TCR+ cell infiltration, * p < 0.05), and promote the regeneration of dentin (** p < 0.01) in the mouse model of pulpitis. In addition, we discovered that the knockdown of latent transforming growth factor beta binding protein 1 (LTBP1) remarkably suppressed the immunoregulation ability of pericytes in vitro and compromised their in vivo regenerative potential in pulpitis. These results indicate that the transplantation of pericytes could efficiently rescue the aberrant phenotype of pulpal inflammation, which may be partially due to LTBP1-mediated T cell suppression.

4.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893282

RESUMO

This paper proposes a Swiss-roll-type mini-reformer employing a copper-zinc catalyst for high-efficient SRM process. Although the commercially available copper-zinc catalysts commonly used in cylindrical-type reformers provide decent conversion rates in the short term, their long-term durability still requires improvement, mainly due to temperature variations in the reformer, catalyst loading, and thermal sintering issues. This Swiss-roll-shaped mini-reformer is designed to improve thermal energy preservation/temperature uniformity by using dual spiral channels to improve the long-term durability while maintaining methanol-reforming efficiency. It was fabricated on a copper plate that was 80 mm wide, 80 mm long, and 4 mm high with spiral channels that were 2 mm deep, 4 mm wide, and 350 mm long. To optimize the design and reformer operation, the catalyst porosity, gas hourly speed velocity (GHSV), operation temperature, and fuel feeding rate are investigated. Swiss-roll-type reformers may require higher driving pressures but can provide better thermal energy preservation and temperature uniformity, posing a higher conversion rate for the same amount of catalyst when compared with other geometries. By carefully adjusting the catalyst bed porosity, locations, and catalyst loading amount as well as other conditions, an optimized gas hourly space velocity (GHSV) can be obtained (14,580 mL/g·h) and lead to not only a high conversion rate (96%) and low carbon monoxide generation rate (0.98%) but also a better long-term durability (decay from 96% to 88.12% after 60 h operation time) for SRM processes. The decay rate, 0.13%/h, after 60 h of operation, is five-folds lower than that (0.67%/h, 0.134%/h) of a commercial cylindrical-type fixed-bed reactor with a commercial catalyst.

5.
Cell Death Dis ; 13(12): 1018, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470861

RESUMO

Down syndrome (DS) is the most common chromosomal abnormality in live-born infants and is caused by trisomy of chromosome 21. Most individuals with DS display craniofacial dysmorphology, including reduced sizes of the skull, maxilla, and mandible. However, the underlying pathogenesis remains largely unknown. Since the craniofacial skeleton is mainly formed by the neural crest, whether neural crest developmental defects are involved in the craniofacial anomalies of individuals with DS needs to be investigated. Here, we successfully derived DS-specific human induced pluripotent stem cells (hiPSCs) using a Sendai virus vector. When DS-hiPSCs were induced to differentiate into the neural crest, we found that trisomy 21 (T21) did not influence cell proliferation or apoptosis. However, the migratory ability of differentiated cells was significantly compromised, thus resulting in a substantially lower number of postmigratory cranial neural crest stem cells (NCSCs) in the DS group than in the control group. We further discovered that the migration defects could be partially attributed to the triplication of the coxsackievirus and adenovirus receptor gene (CXADR; an adhesion protein) in the DS group cells, since knockdown of CXADR substantially recovered the cell migratory ability and generation of postmigratory NCSCs in the DS group. Thus, the migratory deficits of neural crest cells may be an underlying cause of craniofacial dysmorphology in individuals with DS, which may suggest potential targets for therapeutic intervention to ameliorate craniofacial or other neural crest-related anomalies in DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Crista Neural/metabolismo , Síndrome de Down/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Movimento Celular/genética , Crânio/patologia
6.
Stem Cell Res ; 60: 102729, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247841

RESUMO

The MSX1 gene encodes a transcriptional repressor and plays important roles in limb-pattern formation, craniofacial development, and odontogenesis during vertebrate embryogenesis. Previous studies demonstrated that human MSX1 mutations are associated with tooth agenesis, orofacial clefting, and nail dysplasia. Here, we generated a MSX1 knockout cell line from human embryonic stem cell (hESC) line (H9) by CRISPR/cas9-mediated gene targeting. This cell line may serve as a valuable in vitro cell model for MSX1 mutation-related diseases and help to gain more insight into the biological function of MSX1.


Assuntos
Células-Tronco Embrionárias Humanas , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...