Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Heliyon ; 10(7): e29194, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601627

RESUMO

Background: Cardiovascular diseases (CVDs) are the leading global cause of death, with atherosclerosis as the primary cause. Chronic inflammation, endothelial dysfunction, and the role of molecules like nitric oxide and reactive oxygen species are crucial in this context. Our previous research indicated that cilostazol and ginkgo biloba extract could enhance the ability of endothelial cells to dissolve blood clots, but the effects of cilostazol on monocytes remain unexplored. Method: This study utilized peripheral blood mononuclear cells from 10 healthy donors, treated ex vivo with cilostazol. RNA-sequencing, over-representation analysis, xCell stromal cell analysis, and Gene Set Enrichment Analysis were employed to investigate the gene expression changes and biological pathways affected by cilostazol treatment. Results: The study identified specific gene sets and pathways that were enriched or reduced in response to cilostazol treatment, providing insights into its effects on monocytes and potential therapeutic applications in CVD. The analysis also revealed the potential impact of cilostazol on the stromal cell compartment, further broadening our understanding of its multifaceted role. Conclusion: The findings offer a nuanced understanding of the advantages and mechanisms of cilostazol in CVD, uncovering novel therapeutic targets and strategies to enhance the clinical application of cilostazol and contributing to the broader implications of this therapy in cardiovascular health.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38593267

RESUMO

Fixed-dose combination (FDC) therapies can enhance patient convenience and adherence to prescribed treatment regimens. Elagolix is a novel oral gonadotropin-releasing hormone receptor antagonist approved for management of moderate to severe pain associated with endometriosis and heavy menstrual bleeding associated with uterine fibroids. Hormonal add-back therapy can attenuate the reversible hypoestrogenic effects of elagolix. An FDC formulation containing elagolix/estradiol (E2)/norethindrone acetate (NETA) 300/1/0.5 mg as the morning dose and an elagolix 300 mg capsule as the evening dose, were evaluated in 2 bioequivalence studies including the effects of food. Study 1 in premenopausal women assessed the bioavailability of the elagolix 300-mg capsule relative to the commercially available elagolix 300-mg tablet. Study 2 in postmenopausal women, elagolix/E2/NETA (300 mg/1 mg/0.5 mg) FDC capsule was assessed relative to the elagolix 300-mg tablet coadministered with E2/NETA 1-mg/0.5-mg tablet, the regimen that was studied in Phase 3 uterine fibroid studies. Under fasting conditions, the test elagolix 300-mg capsule was bioequivalent to the reference elagolix 300-mg tablet. Under fasting conditions, the elagolix/E2/NETA FDC capsule was bioequivalent to the coadministered elagolix 300-mg tablet and E2/NETA 1/0.5-mg tablet. Following administration of elagolix/E2/NETA FDC capsule after a high-fat breakfast, elagolix mean maximum concentration (Cmax) and area under the plasma concentration-time curve (AUC) were 38% and 28% lower, relative to fasting conditions. NETA mean Cmax was 51% lower and AUC from time 0 to infinity was 20% higher, while baseline-adjusted total estrone mean Cmax and AUC were 46% and 14% lower, respectively. No safety concerns were identified. These results enabled bridging the elagolix/E2/NETA FDC capsule.

3.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474264

RESUMO

Acute lung injury occurs in 20-25% of cases following traumatic brain injury (TBI). We investigated changes in lung transcriptome expression post-TBI using animal models and bioinformatics. Employing unilateral controlled cortical impact for TBI, we conducted microarray analysis after lung acquisition, followed by gene set enrichment analysis of differentially expressed genes. Our findings indicate significant upregulation of inflammation-related genes and downregulation of nervous system genes. There was enhanced infiltration of adaptive immune cells, evidenced by positive enrichment in Lung-Th1, CD4, and CD8 T cells. Analysis using the Tabula Sapiens database revealed enrichment in lung-adventitial cells, pericytes, myofibroblasts, and fibroblasts, indicating potential effects on lung vasculature and fibrosis. Gene set enrichment analysis linked TBI to lung diseases, notably idiopathic pulmonary hypertension. A Venn diagram overlap analysis identified a common set of 20 genes, with FOSL2 showing the most significant fold change. Additionally, we observed a significant increase in ADRA1A→IL6 production post-TBI using the L1000 library. Our study highlights the impact of brain trauma on lung injury, revealing crucial gene expression changes related to immune cell infiltration, cytokine production, and potential alterations in lung vasculature and fibrosis, along with a specific spectrum of disease influence.


Assuntos
Lesões Encefálicas Traumáticas , Camundongos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Inflamação , Transcriptoma , Análise em Microsséries , Fibrose , Modelos Animais de Doenças
4.
Biomater Adv ; 155: 213699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979440

RESUMO

Triple-negative breast cancer (TNBC) is characterized by highly proliferative cancer cells and is the only subtype of breast cancer that lacks a targeted therapy. Boron neutron capture therapy (BNCT) is an approach that combines chemotherapy with radiotherapy and can potentially offer beneficial targeted treatment for TNBC patients owing to its unique ability to eradicate cancer cells selectively while minimizing damage to the surrounding healthy cells. Since BNCT relies on specific delivery of a high loading of B10 to the tumor site, there is growing research interest to develop more potent boron-based drugs for BNCT that can overcome the limitations of small-molecule boron compounds. In this study, polyethylene-glycol-coated boron carbon oxynitride nanoparticles (PEG@BCNO) of size 134.2±23.6nm were prepared as a promising drug for BNCT owing to their high boron content and enhanced biocompatibility. The therapeutic efficiency of PEG@BCNO was compared with a state-of-the-art 10BPA boron drug in mice bearing MDA-MB-231 tumor. In the orthotopic mouse model, PEG@BCNO showed higher B10 accumulation in the tumor tissues (6 µg 10B/g tissue compared to 3 µg 10B/g tissue in mice administered B10-enriched 10BPA drug) despite using the naturally occurring 11B/10B boron precursor in the preparation of the BCNO nanoparticles. The in vivo biodistribution of PEG@BCNO in mice bearing MDA-MB-231 showed a tumor/blood ratio of ~3.5, which is comparable to that of the state-of-the-art 10BPA-fructose drug. We further demonstrated that upon neutron irradiation, the mice bearing MDA-MB-231 tumor cells treated with PEG@BCNO and 10BPA showed tumor growth delay times of 9 days and 1 day, respectively, compared to mice in the control group after BNCT. The doubling times (DTs) for mice treated with PEG@BCNO and 10BPA as well as mice in the control group were calculated to be 31.5, 19.8, and 17.7 days, respectively. Immunohistochemical staining for the p53 and caspase-3 antibodies revealed that mice treated with PEG@BCNO showed lower probability of cancer recurrence and greater level of cellular apoptosis than mice treated with 10BPA and mice in the control group. Our study thus demonstrates the potential of pegylated BCNO nanoparticles in effectively inhibiting the growth of TNBC tumors compared to the state-of-the-art boron drug 10BPA.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Boro/farmacologia , Distribuição Tecidual , Nanopartículas/uso terapêutico
5.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762382

RESUMO

Urothelial cancer, a common urinary system malignancy, often presents treatment challenges due to metastasis and chemotherapy side effects. Angiogenesis, crucial for tumor growth, has become a target for drug development. This study explores the expression, prognostic value, and clinical correlation of RHOJ in the TCGA BLCA, GSE31684, and GSE32894 datasets. We identify common differentially expressed genes across these databases and utilize g:Profiler and Cytoscape ClueGO for functional assessment. Further, we perform a gene set enrichment analysis (GSEA) using Hallmark gene sets and use the imsig package for immune cell infiltration analysis. Our analysis indicates that RHOJ expression levels significantly impact survival rates, tumor progression, and immune response in urothelial tumors. High RHOJ expression correlated with poor prognosis, advanced disease stages, and an increase in monocyte population within the tumor microenvironment. This aligns with current literature indicating a key role of immune infiltration in bladder cancer progression and treatment response. Moreover, the GSEA and imsig results further suggest a potential mechanistic link between RHOJ expression and immune-related pathways. Considering the increasing emphasis on immunotherapeutic strategies in bladder cancer management, our findings on RHOJ's potential as a diagnostic biomarker and its association with immune response open new avenues for therapeutic interventions.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/genética , Neoplasias da Bexiga Urinária/genética , Relevância Clínica , Bexiga Urinária , Bases de Dados Factuais , Microambiente Tumoral/genética , Proteínas rho de Ligação ao GTP/genética
6.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685838

RESUMO

Various pathological alterations, including lipid-deposition-induced comparative cardiac lipotoxicity, contribute to cardiac aging in the failing heart. A decline in endogenous myogenin proteins can lead to the reversal of muscle cell differentiation and the creation of mononucleated muscle cells. Myogenin may be a specific regulator of adaptive responses to avoid pathological hypertrophy in the heart. Hence, it is important to understand the regulation of myogenin expression and functions in response to exposure to varied stresses. In this study, we first examined and verified the cytotoxic effect of palmitic acid on H9c2 cells. The reduction in myogenin mRNA and protein expression by palmitic acid was independent of the effect of glucose. Meanwhile, the induction of cyclooxygenase 2 and activating transcription factor 3 mRNAs and proteins by palmitic acid was dependent on the presence of glucose. In addition, palmitic acid failed to disrupt cell cycle progression when H9c2 cells were treated with no glucose. Next, we examined the functional role of myogenin in palmitic-acid-treated H9c2 cells and found that myogenin may be involved in palmitic-acid-induced mitochondrial and cytosolic ROS generation, cellular senescence, and mitochondrial membrane potential. Finally, the GSE150059 dataset was deposited in the Gene Expression Omnibus website and the dataset was further analyzed via the molecular microscope diagnostic system (MMDx), demonstrating that many heart transplant biopsies currently diagnosed as no rejection have mild molecular-antibody-mediated rejection-related changes. Our data show that the expression levels of myogenin were lower than the average level in the studied population. Combining these results, we uncover part of the functional role of myogenin in lipid- and glucose-induced cardiac cell stresses. This finding provides valuable insight into the differential role of fatty-acid-associated gene expression in cardiovascular tissues. Additionally, the question of whether this gene expression is regulated by myogenin also highlights the usefulness of a platform such as MMDx-Heart and can help elucidate the functional role of myogenin in heart transplantation.


Assuntos
Transplante de Coração , Ácido Palmítico , Ácido Palmítico/farmacologia , Miogenina , Coração
7.
Front Oncol ; 13: 1173970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476380

RESUMO

Introduction: MicroRNAs may be implicated in the acquisition of drug resistance in chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but also genes associated with the activation of drug transfer proteins or essential signaling pathways. Methods: To understand the impact of specifically expressed miRNAs in chronic myeloid leukemia and their target genes, we collected peripheral blood mononuclear cells (PBMC) from patients diagnosed with chronic myeloid leukemia (CML) and healthy donors to determine whole miRNA expression by small RNA sequencing and screened out 31 differentially expressed microRNAs (DE-miRNAs) with high expression. With the utilization of miRNA set enrichment analysis tools, we present here a comprehensive analysis of the relevance of DE-miRNAs to disease and biological function. Furthermore, the literature-based miRNA-target gene database was used to analyze the overall target genes of the DE-miRNAs and to define their associated biological responses. We further integrated DE-miRNA target genes to identify CML miRNA targeted gene signature singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical CML patients. Finally, the association of CMTGSS stratification with multiple CML cell lineage gene sets was validated in PBMC samples from CML patients using GSEA. Results: Although individual miRNAs have been reported to have varying degrees of impact on CML, overall, our results show that abnormally upregulated miRNAs are associated with apoptosis and aberrantly downregulated miRNAs are associated with cell cycle. The clinical database shows that our defined DE-miRNAs are associated with the prognosis of CML patients. CMTGSS-based stratification analysis presented a tendency for miRNAs to affect cell differentiation in the blood microenvironment. Conclusion: Collectively, this study defined differentially expressed miRNAs by miRNA sequencing from clinical samples and comprehensively analyzed the biological functions of the differential miRNAs in association with the target genes. The analysis of the enrichment of specific myeloid differentiated cells and immune cells also suggests the magnitude and potential targets of differentially expressed miRNAs in the clinical setting. It helps us to make links between the different results obtained from the multi-faceted studies to provide more potential research directions.

8.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298208

RESUMO

Glioblastoma multiforme (GBM) is a grade IV human glioma. It is the most malignant primary central nervous system tumor in adults, accounting for around 15% of intracranial neoplasms and 40-50% of all primary malignant brain tumors. However, the median survival time of GBM patients is still less than 15 months, even after treatment with surgical resection, concurrent chemoradiotherapy, and adjuvant chemotherapy with temozolomide (TMZ). Telomere maintenance 2 (TELO2) mRNA is highly expressed in high-grade glioma patients, and its expression correlates with shorter survival outcomes. Hence, it is urgent to address the functional role of TELO2 in the tumorigenesis and TMZ treatment of GBM. In this study, we knocked down TELO2 mRNA in GBM8401 cells, a grade IV GBM, compared with TELO2 mRNA overexpression in human embryonic glial SVG p12 cells and normal human astrocyte (NHA) cells. We first analyzed the effect of TELO2 on the Elsevier pathway and Hallmark gene sets in GBM8401, SVG p12, and NHA via an mRNA array analysis. Later, we further examined and analyzed the relationship between TELO2 and fibroblast growth factor receptor 3, cell cycle progression, epithelial-mesenchymal transient (EMT), reactive oxygen species (ROS), apoptosis, and telomerase activity. Our data showed that TELO2 is involved in several functions of GBM cells, including cell cycle progression, EMT, ROS, apoptosis, and telomerase activity. Finally, we examined the crosstalk between TELO2 and the responsiveness of TMZ or curcumin mediated through the TELO2-TTI1-TTI2 complex, the p53-dependent complex, the mitochondrial-related complex, and signaling pathways in GBM8401 cells. In summary, our work provides new insight that TELO2 might modulate target proteins mediated through the complex of phosphatidylinositol 3-kinase-related kinases in its involvement in cell cycle progression, EMT, and drug response in GBM patients.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioblastoma , Glioma , Telomerase , Adulto , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Telomerase/genética , Telomerase/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Carcinogênese/genética , Transformação Celular Neoplásica , RNA Mensageiro , Telômero/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
9.
Biomed Pharmacother ; 161: 114565, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958193

RESUMO

Global warming increases the incidence of heat stroke (HS) and HS causes the reduction of visceral blood flow during hyperthermia, leading to intestinal barrier disruption, microbial translocation, systemic inflammation and multiple organ failure. Cathelicidin LL-37 exhibits antimicrobial activities, helps innate immunity within the gut to maintain intestinal homeostasis, and augments intestinal wound healing and barrier function. Thus, we evaluated the effects and possible mechanisms of cathelicidin LL-37 on HS. Wistar rats were placed in a heating-chamber of 42 ̊C to induce HS. Changes in rectal temperature, hemodynamic parameters, and survival rate were measured during the experimental period. Blood samples and ilea were collected to analyze the effects of LL-37 on systemic inflammation, multiple organ dysfunction, and intestinal injury. Furthermore, LS174T and HT-29 cells were used to assess the underlying mechanisms. Our data showed cathelicidin LL-37 ameliorated the damage of intestinal cells induced by HS. Intestinal injury, systemic inflammation, and nitrosative stress (high nitric oxide level) caused by continuous hyperthermia were attenuated in HS rats treated with cathelicidin LL-37, and hence, improved multiple organ dysfunction, coagulopathy, and survival rate. These beneficial effects of cathelicidin LL-37 were attributed to the protection of intestinal goblet cells (by increasing transepithelial resistance, mucin-2 and Nrf2 expression) and the improvement of intestinal barrier function (less cyclooxygenase-2 expression and FITC-dextran translocation). Interestingly, high cathelicidin expression in the ileal samples of inflammatory bowel disease patients was associated with better clinical outcome. These results suggest that cathelicidin LL-37 could prevent heat stress-induced intestinal damage and heat-related illnesses.


Assuntos
Transtornos de Estresse por Calor , Golpe de Calor , Ratos , Animais , Catelicidinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Insuficiência de Múltiplos Órgãos , Ratos Wistar , Golpe de Calor/tratamento farmacológico , Inflamação
10.
Life Sci ; 310: 121039, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209832

RESUMO

AIMS: Heat stroke is a life-threatening disorder triggered by thermoregulatory failure. Hyperthermia-induced splanchnic hypoperfusion has been reported to induce intestinal barrier dysfunction and systemic immune response that ultimately cause multiple-organ failure and death. Intestinal goblet cells contribute greatly to the formation of mucus barrier, which hinders translocation of gut microorganisms. Studies have reported that misoprostol can not only alleviate ischemic injury but also protect GI mucosal layer. Therefore, we evaluated the effects of misoprostol on intestinal goblet cells after heat stress and on multiple-organ dysfunction in heat stroke rats. MAIN METHODS: Heat stress was established in the heating chamber and followed by misoprostol treatment. Changes in hemodynamics, organ function indices, inflammation, oxidative stress, and survival rate were analyzed. Furthermore, ilea and LS174T cells were used to examine intestinal functions. KEY FINDINGS: Heat stress caused dysfunction of intestinal goblet cells and damage to ilea by increasing oxidative stress and apoptosis. Increased nitrosative stress and inflammation accompanied by hypotension, hypoperfusion, tachycardia, multiple-organ dysfunction, and death were observed in the heat stroke rat model. Treatment of LS174T cells with misoprostol not only decreased oxidative stress and apoptosis but also reduced cytotoxicity caused by heat stress. Moreover, misoprostol prevented disruption of the enteric barrier, multiple-organ injury, and death in rats with heat stroke. SIGNIFICANCE: This study indicates that misoprostol could alleviate intestinal damage and organ injury caused by heat stress and be a potential therapy for heat-related illnesses.


Assuntos
Golpe de Calor , Misoprostol , Ratos , Animais , Misoprostol/farmacologia , Alprostadil/farmacologia , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Células Caliciformes , Golpe de Calor/complicações , Golpe de Calor/tratamento farmacológico , Inflamação , Resposta ao Choque Térmico , Mucosa Intestinal
11.
J Inflamm Res ; 15: 4833-4851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36042866

RESUMO

Purpose: In this study, we use animal models combined with bioinformatics strategies to investigate the potential changes in overall renal transcriptional expression after traumatic brain injury. Methods: Microarray analysis was performed after kidney acquisition using unilateral controlled cortical impact as the primary mouse TBI model. Multi-oriented gene set enrichment analysis was performed for differentially expressed genes. Results: The results showed that TBI affected the gene set associated with mitochondria function in kidney cells, and a negative enrichment of gene sets associated with immune cell migration and epidermal development was also observed. Analysis of the disease phenotype gene set revealed that differential expression of mitochondria-related genes was associated with lactate metabolism. Alternatively, activation and adhesion of immune cells associated with the complement system may promote autoinflammation in kidney tissue. The simulated immune cell infiltration analysis showed an increase in the proportion of activated memory CD4 T cells and a decrease in the proportion of resting memory CD4 T cells, suggesting that activated memory CD4 T cell infiltration may be involved in the inflammation of renal tissue and cause damage to renal cells, such as principal cells, mesangial cells and loops of Henle cells. Conclusion: This study is the first to reveal the effects of brain trauma on the kidney. TBI may affect the expression of mitochondria function-related gene sets in renal cells by increasing lactate. It may also affect renal mesangial cells by inducing increased infiltration of immune cells through mechanisms related to complement system activation or autoimmune antibodies.

12.
Front Oncol ; 12: 843742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677156

RESUMO

Hepatocellular carcinoma (HCC) is the primary histological subtype of liver cancer, and its incidence rates increase with age. Recently, systemic therapies, such as immune checkpoint inhibitors, monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been more beneficial than conventional therapies for treating HCC. Nonetheless, the prognosis of late-stage HCC remains dismal because of its high recurrence rates, even with substantial advances in current therapeutic strategies. A new treatment, such as a combination of current systemic therapies, is urgently required. Therefore, we adopted a repurposing strategy and tried to combine ascorbate with TKIs, including lenvatinib and regorafenib, in HepG2 and Hep3B cells. We investigated the potential functional impact of pharmacological concentrations of ascorbate on the cell-cycle profiles, mitochondrial membrane potential, oxidative response, synergistic effects of lenvatinib or regorafenib, and differential responsiveness between HepG2 and Hep3B cells. Our data suggest that the relative level of cell density is an important determinant for ascorbate cytotoxicity in HCC. Furthermore, the data also revealed that the cytotoxic effect of pharmacological concentrations of ascorbate might not be mediated via our proposed elevation of ROS generation. Ascorbate might be involved in redox homeostasis to enhance the efficacy of TKIs in HepG2 and Hep3B cells. The synergistic effects of ascorbate with TKIs (lenvatinib and regorafenib) support their potential as an adjuvant for HCC targeted TKI therapy. This research provides a cheap and new combinatory therapy for HCC treatment.

13.
J Pak Med Assoc ; 72(5): 896-900, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35713052

RESUMO

OBJECTIVE: To highlight the clinical characteristics of primary biliary cholangitis on the basis of gender in terms of the extent of liver injury and extra-liver autoimmune expressions. METHODS: The retrospective study was conducted at the Tri-Service General Hospital, Taiwan, and comprised data of patients aged >20 years diagnosed with primary biliary cholangitis between January 2000 and December 2018. Patients in the control group were randomly selected from the health examination centre. Liver injury manifestations and susceptibilities were analysed along gender lines. The gene expression microarray data from the National Centre for Biotechnology Information Gene Expression Omnibus database was also used to explore the relationship between autoimmune-induced inflammation and androgen response expression. Statistical analysis was done using Graph-Pad Prism 7.0. RESULTS: Of the 75 cases, 63(84%) were females with a mean age of 64.6±1.78 years, and 12(16%%) were males with a mean age of 46.6±5.6 years. Of the 66 controls, 55(83.3%) were females with a mean age of 51.67 years, and 11(16.6%) were males with a mean age of 45.9 years. There were no significant differences in terms of liver profiles related to gender in the control group (p>0.05). Among the cases, male patients showed fewer extrahepatic autoimmune disorders and more severe liver injuries before or after ursodeoxycholic acid treatment (p<0.05). There was a positive correlation between androgen receptor response and the extent of systemic inflammation (p<0.05). Conclusion: The association between androgen receptor responses and inflammation was linked to gender-related hepatic injuries, which may explain why liver inflammation in male patients is generally more severe compared to the female patients. Conclusion: The association between androgen receptor responses and inflammation was linked to gender-related hepatic injuries, which may explain why liver inflammation in male patients is generally more severe compared to the female patients.


Assuntos
Colangite , Cirrose Hepática Biliar , Adulto , Idoso , Colangite/epidemiologia , Feminino , Humanos , Inflamação , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/epidemiologia , Masculino , Pessoa de Meia-Idade , Receptores Androgênicos , Estudos Retrospectivos , Caracteres Sexuais , Fatores Sexuais
14.
Genes Dis ; 9(4): 1049-1061, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685459

RESUMO

The integral membrane, Kunitz-type serine protease inhibitors HAI-1 and HAI-2, can suppress the proteolytic activity of the type 2 transmembrane serine protease matriptase with high specificity and potency. High levels of extracellular matriptase proteolytic activity have, however, been observed in some neoplastic B-cells with high levels of endogenous HAI-2, indicating that HAI-2 may be an ineffective matriptase inhibitor at the cellular level. The different effectiveness of the HAIs in the control of extracellular matriptase proteolytic activity is examined here. Upon inducing matriptase zymogen activation in the HAI Teton Daudi Burkitt lymphoma cells, which naturally express matriptase with very low levels of HAI-2 and no HAI-1, nascent active matriptase was rapidly inhibited or shed as an enzymatically active enzyme. With increasing HAI-1 expression, cellular matriptase-HAI-1 complex increased, and extracellular active matriptase decreased proportionally. Increasing HAI-2 expression, however, resulted in cellular matriptase-HAI-2 complex levels reaching a plateau, while extracellular active matriptase remained high. In contrast to this differential effect, both HAI-1 and HAI-2, even at very low levels, were shown to promote the expression and cell-surface translocation of endogenous matriptase. The difference in the suppression of extracellular active matriptase by the two closely related serine protease inhibitors could result from the primarily cell surface expression of HAI-1 compared to the mainly intracellular localization of HAI-2. The HAIs, therefore, resemble one another with respect to promoting matriptase expression and surface translocation but differ in their effectiveness in the control of extracellular matriptase enzymatic activity.

15.
Ecotoxicol Environ Saf ; 239: 113599, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567930

RESUMO

BACKGROUND: Benzo[a]pyrene (BaP), a toxic carcinogen, is associated with various adverse effects but is rarely discussed in muscle-related disorders. This study investigated in vitro and in vivo effects triggered by BaP exposure in muscles and hypothesized that exposure might induce conditions similar to sarcopenia due to the shared mechanism of oxidative stress. In vitro experiments used C2C12 mouse myoblasts to examine effects induced by BaP exposure in control (untreated) and BaP-treated (10 µM/ml) muscle cells. An established TNF-α-treated sarcopenia model was utilized to verify our results. In vivo experiments compared immunohistochemical staining of sarcopenia-related markers in rats exposed to clean air and polluted air. RESULTS: In C2C12 cells, after 2-72 h of BaP exposure, elevated mRNA and protein expressions were observed in aryl hydrocarbon receptor (AhR) and cytochrome P450 1A1, subsequently in ROS (NOX2 and NOX4) production, inflammatory cytokines (IL-6, TNF-α, and NF-kB), and proteins mediating apoptotic cell death (caspase-3 and PARP). Two myokines also altered mRNA and protein expressions akin to changes in sarcopenia, namely decreased irisin levels and increased myostatin levels. In addition, N-acetylcysteine, a well-known antioxidant, led to decrease in oxidative markers induced by BaP. The validation by TNF-α-treated sarcopenia model revealed comparable biological responses in either TNF-α or BaP treated C2C12 cells. In vivo experiments with rats exposed to air pollution showed increased expression of BaP, AhR, 8-hydroxydeoxyguanosine, and myostatin and decreased irisin expression in immunohistochemical staining. CONCLUSIONS: Our results suggest that BaP exerts deleterious effects on the muscle, leading to conditions indicative of sarcopenia. Antioxidant supplementation may be a treatment option for BaP-induced sarcopenia, but further validation studies are needed.


Assuntos
Benzo(a)pireno , Sarcopenia , Animais , Antioxidantes , Benzo(a)pireno/toxicidade , Fibronectinas , Camundongos , Músculos/metabolismo , Miostatina , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sarcopenia/induzido quimicamente , Fator de Necrose Tumoral alfa/genética
17.
Mol Ther Nucleic Acids ; 27: 656-669, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036072

RESUMO

Rupture of abdominal aortic aneurysms (AAAs) is one of the leading causes of sudden death in the elderly population. The osteogenic transcription factor runt-related gene (RUNX) encodes multifunctional mediators of intracellular signal transduction pathways in vascular remodeling and inflammation. We aimed to evaluate the roles of RUNX2 and its putative downstream target miR-424/322 in the modulation of several AAA progression-related key molecules, such as matrix metalloproteinases and vascular endothelial growth factor. In the GEO database, we found that male patients with AAAs had higher RUNX2 expression than did control patients. Several risk factors for aneurysm induced the overexpression of MMPs through RUNX2 transactivation, and this was dependent on Smad2/3 upregulation in human aortic smooth muscle cells. miR-424 was overexpressed through RUNX2 after angiotensin II (AngII) challenge. The administration of siRUNX2 and miR-424 mimics attenuated the activation of the Smad/RUNX2 axis and the overexpression of several AAA progression-related molecules in vitro. Compared to their littermates, miR-322 KO mice were susceptible to AngII-induced AAA, whereas the silencing of RUNX2 and the administration of exogenous miR-322 mimics ameliorated the AngII-induced AAA in ApoE KO mice. Overall, we established the roles of the Smad/RUNX2/miR-424/322 axis in AAA pathogenesis. We demonstrated the therapeutic potentials of miR-424/322 mimics and RUNX2 inhibitor for AAA progression.

18.
Front Oncol ; 11: 749661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956872

RESUMO

Overexpression of the deubiquitinase USP2a leads to stabilization of fatty acid synthase (FAS), the levels of which are often elevated in aggressive human cancers. Consequently, there is an urgent need for inhibitors to suppress the deubiquitination activity of USP2a so as to upregulate FAS protein degradation. We first analyzed the relationship between the expression level of USP2a and survival using The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (HNSC) data collection. Our results suggested survival rates were lower among HNSC patients expressing higher levels of USP2a. We then investigated two thiopurine drugs, 6-thioguanine (6-TG) and 6-mercaptopurine (6-MP), to determine whether they could potentially serve as inhibitors of USP2a. Western blot analysis showed that levels of two USP2a target proteins, FAS and Mdm2, were dose-dependently decreased in A253 submaxillary carcinoma cells treated with 6-TG or 6-MP. Responding to the degradation of Mdm2, levels of p53 were increased. We found that 6-TG and 6-MP also suppressed levels of both USP2a mRNA and protein, suggesting these two thiopurines do not act solely through direct inhibition of USP2a. The effects of 6-TG and 6-MP were not cell type-specific, as they elicited similar decreases in FAS protein in leukemia, prostate and cervical cancer cell lines. 6-TG and 6-MP had effects on several cell cycle proteins, including another USP2a target protein, cyclin D1. The populations of cells in subG1 and S phase were increased by 6-TG and 6-MP, which was accompanied by reductions in G1 phase cells. In untreated cells, USP2a transfection increased FAS and cyclin D1 levels compared to an enzyme-dead USP2a C276A mutant, which lacked deubiquitinating activity. However, USP2a transfection failed to reverse the suppressive effects of 6-TG and 6-MP on FAS levels. In summary, these findings suggest 6-TG and 6-MP reduce the stability of some USP2a targets, including FAS and Mdm2, by inhibiting USP2a-catalyzed deubiquitination in some cancer cells. Our work also provides repurposing evidence supporting 6-TG and 6-MP as target therapeutic drugs, such as USP2a/FAS in this study.

19.
Biomedicines ; 9(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34829794

RESUMO

Coronary artery diseases are major problems of the world. Coronary artery disease patients frequently suffer from peptic ulcers when they receive aspirin treatment. For diagnostic and therapeutic purposes, the implementation of panendoscopy (PES) with biopsy is necessary. Some biopsy samples are wasted after the assay is completed. In the present study, we established a protocol for human gastric fibroblast isolation and induced pluripotent stem cell (iPSC) generation from gastric fibroblasts via PES with biopsy. We showed that these iPSCs can be differentiated into functional cardiomyocytes in vitro. To our knowledge, this is the first study to generate iPSCs from gastric fibroblasts in vitro.

20.
BMC Geriatr ; 21(1): 531, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620111

RESUMO

BACKGROUND: The soluble receptor for advanced glycation end products (sRAGE) has been proposed to serve as a marker for disease severity, but its role in sarcopenia, an age-related progressive loss of muscle mass and function, remains elusive. This study examines the association between sRAGE and sarcopenia. METHODS: A total of 314 community-dwelling elderly adults who had their health examination at Tri-Service General Hospital from 2017 to 2019 underwent protein analysis with enzyme-linked immunosorbent assay. The relationship with sarcopenia and its detailed information, including components and diagnosis status, were examined using linear and logistic regressions. RESULTS: As for sarcopenia components, low muscle mass (ß = 162.8, p = 0.012) and strength (ß = 181.31, p = 0.011) were significantly correlated with sRAGE, but not low gait speed (p = 0.066). With regard to disease status, confirmed sarcopenia (ß = 436.93, p < 0.001), but not probable (p = 0.448) or severe sarcopenia (p = 0.488), was significantly correlated with sRAGE. In addition, females revealed a stronger association with sRAGE level by showing significant correlations with low muscle mass (ß = 221.72, p = 0.014) and low muscle strength (ß = 208.68, p = 0.043). CONCLUSIONS: sRAGE level showed a positive association with sarcopenia, illustrating its involvement in the evolution of sarcopenia. This association is more evident in female groups, which may be attributed to the loss of protection from estrogen in postmenopausal women. Utilizing sRAGE level as a prospective marker for sarcopenia deserves further investigation in future studies.


Assuntos
Produtos Finais de Glicação Avançada , Sarcopenia , Idoso , Biomarcadores , Feminino , Humanos , Estudos Prospectivos , Receptor para Produtos Finais de Glicação Avançada , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...