Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5698, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383206

RESUMO

Rail and road infrastructure is essential for economic growth and development but can cause a gradual loss in biodiversity and degradation of ecosystem function and services. We assessed the influence of underpass dimensions, fencing, proximity to water and roads, Normalized Difference Vegetation Index (NDVI), presence of other species and livestock on underpass use by large and medium-sized mammals. Results revealed hyenas and leopards used the underpasses more than expected whereas giraffes and antelopes used the underpasses less than expected. Generalized linear mixed-effects models revealed that underpass height influenced use by wildlife, with several species preferring to use taller underpasses. Electric fencing increased underpass use by funneling species towards underpasses, except for elephants and black-backed jackal for which it reduced underpass passage. We also found that the use of underpasses by livestock reduced the probability of use by nearly 50% for wildlife species. Carnivore species were more likely to cross underpasses used by their prey. Buffalo, livestock, and hyenas used underpasses characterized by vegetation with higher NDVI and near water sources while baboons, dik-diks and antelope avoided underpasses with high NDVI. Our findings suggest a need for diverse and comprehensive approaches for mitigating the negative impacts of rail on African wildlife.


Assuntos
Ecossistema , Mamíferos , Animais , Animais Selvagens , Ecologia , Quênia
2.
Ticks Tick Borne Dis ; 13(3): 101935, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325688

RESUMO

Understanding factors that shape tick population genetic structure is important as they may be exploited in crafting strategies for vector control. Amblyomma tholloni, or "elephant tick" is a three-host tick whose adults preferentially parasitize African elephants. The aim of this study was to determine the influence of fragmentation of the host populations on the genetic structure of this tick species from different ecosystems in Kenya, using the second internal transcribed spacer (ITS-2) and mitochondrial cytochrome oxidase 1 (CO1) loci. Population genetic analysis of ticks collected from four elephant populations using ITS-2 and CO1 loci revealed high gene diversity. Gene diversity at the ITS-2 locus was 0.91 and the nucleotide diversity was, 0.01. ITS-2 gene diversity was highest in Laikipia-Samburu ecosystem (0.947) and lowest in Tsavo (0.80). The CO1 locus also had high gene diversity, 0.790, and low nucleotide diversity, 0.006, and like ITS-2, gene diversity was higher in Laikipia-Samburu ecosystem (1.00) and lower in Tsavo (0.286). There was a modest statistically significant genetic differentiation among the four tick populations based on ITS-2 (FST = 0.104, P < 0.001; ΦST = 0.105, P < 0.001), and a 10% of molecular variance attributed to genetic variation between populations. There was also statistically significant differentiation among tick populations using haplotype frequencies for CO1 locus (FST = 0.167, P < 0.001) accounting for 17% of genetic variance among populations, but not modelled genetic distances (ΦST = 0.029, P = 0.095) suggesting very recent genetic differentiation. In addition, populations of A. tholloni in Kenya had a significantly negative Tajima D and Fu & Li's F* and D* at the CO1 locus suggesting recent positive selection. The extensive acaricide use in livestock, which host the larval stage, could be driving purifying selection and genetic hitchhiking of the CO1 locus. However, tests sensitive to demography such as Fu's FS, Ramos-Onsins & Rozas's R2 and raggedness index r were statistically significant at the ITS-2 locus suggesting ancient demographic expansion. Elephant population fragmentation appears to shape the genetic structure of A. tholloni, while agro-ecological factors could influence the genetic diversity of ticks.


Assuntos
Elefantes , Carrapatos , Amblyomma , Animais , Ecossistema , Elefantes/genética , Genética Populacional , Quênia , Repetições de Microssatélites , Carrapatos/genética
3.
Heliyon ; 7(3): e06364, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33748462

RESUMO

Roadkill is one of the highest causes of wildlife mortality and is of global conservation concern. Most roadkill studies have focused on wildlife in developed countries such as the United States of America and temperate biomes, but there are limited data for the impacts of roads on wildlife in the African tropics, where road infrastructure development is projected to grow rapidly in natural environments and conservation areas. The Tsavo Conservation Area is an important biodiversity hotspot in eastern Kenya and is bisected by a major highway and railways that connect the port of Mombasa to the interior. Along this infrastructure corridor, roadkill was recorded for 164 days over an 11-year period (2007-2018). In total, 1,436 roadkill were recorded from 13,008 km driven of a 164.42 km Nairobi-Mombasa road representing 0.11 collisions per kilometer. The majority of roadkill were small to medium sized mammals (<15kg) (53%; n = 756), whereas birds comprised 32% (n = 460), reptiles 10% (n = 143), with the remaining 5% (n = 77) being large mammals (>15kg). Of the 460 birds recorded, 264 were identifiable represented by 62 species. All large mammals comprising 10 species were identified, including the African elephant, Loxodonta africana and the endangered African wild dog, Lycaon pictus. Thirteen species of small mammal were also identified dominated by Kirk's dik-dik (Madoqua kirkii). Reptiles were represented by 11 species which were identified to the species level. Roadkill hotspots were identified using a kernel density method. The spatial distribution of roadkill was associated with adjacent shrub vegetation and proximity to permanent and seasonal rivers, and differences in seasonality and habitats were observed. Roadkill was lowest on road sections that traversed settled areas as opposed to roads adjacent to the protected areas. The results demonstrate that roadkill for two of the taxonomic groups - mammals and birds - appear high with numerous species detected in the Tsavo Conservation Area. These results can be used to focus efforts to reduce wildlife mortality by guiding future mitigation efforts.

4.
Parasit Vectors ; 13(1): 145, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188499

RESUMO

BACKGROUND: The dynamics of helminth infection in African elephant populations are poorly known. We examined the effects of age, sex, social structure and the normalized difference vegetation index (NDVI) as primary drivers of infection patterns within and between elephant populations. METHODS: Coprological methods were used to identify helminths and determine infection patterns in distinct elephant populations in Maasai Mara National Reserve, Tsavo East National Park, Amboseli National Park and Laikipia-Samburu Ecosystem. Gaussian finite mixture cluster analyses of egg dimensions were used to classify helminth eggs according to genera. Generalized linear models (GLM) and Chi-square analyses were used to test for variation in helminth infection patterns and to identify drivers in elephant populations. RESULTS: Helminth prevalence varied significantly between the studied populations. Nematode prevalence (96.3%) was over twice as high as that of trematodes (39.1%) in elephants. Trematode prevalence but not nematode prevalence varied between populations. Although we found no associations between helminth infection and elephant social groups (male vs family groups), the median helminth egg output (eggs per gram, epg) did vary between social groups: family groups had significantly higher median epg than solitary males or males in bachelor groups. Young males in mixed sex family groups had lower epg than females when controlling for population and age; these differences, however, were not statistically significant. The average NDVI over a three-month period varied between study locations. Cluster analyses based on egg measurements revealed the presence of Protofasciola sp., Brumptia sp., Murshidia sp., Quilonia sp. and Mammomonogamus sp. GLM analyses showed that the mean epg was positively influenced by a three-month cumulative mean NDVI and by social group; female social groups had higher epg than male groups. GLM analyses also revealed that epg varied between elephant populations: Samburu-Laikipia elephants had a higher and Tsavo elephants a lower epg than Amboseli elephants. CONCLUSIONS: Elephants had infection patterns characterized by within- and between-population variation in prevalence and worm burden. Sociality and NDVI were the major drivers of epg but not of helminth prevalence. Gastrointestinal parasites can have a negative impact on the health of wild elephants, especially during resource scarcity. Thus, our results will be important when deciding intervention strategies.


Assuntos
Elefantes/parasitologia , Fezes/parasitologia , Helmintíase Animal/epidemiologia , Helmintos/isolamento & purificação , Enteropatias Parasitárias/veterinária , Animais , Ecossistema , Feminino , Helmintos/classificação , Enteropatias Parasitárias/epidemiologia , Quênia/epidemiologia , Masculino , Contagem de Ovos de Parasitas , Plantas , Prevalência
5.
PLoS One ; 14(12): e0226083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805127

RESUMO

Although historical records indicate the presence of Ehrlichia and Babesia in African elephants, not much is known about their prevalence and diversity in elephants and their ticks, Amblyomma thollonii and Rhipicephalus humeralis. We amplified and sequenced the hypervariable V4 region of the 18S rRNA gene of Babesia and Theileria and the heat shock protein gene (groEL) of Ehrlichia/Anaplasma in DNA extracted from elephant blood (n = 104) and from elephant ticks (n = 52). Our results showed that the African elephants were infected with a novel Babesia spp. while A. thollonii was infected with Theileria bicornis and Theileria cf. velifera. This is the first record of T. bicornis; a protozoan that is linked to fatal infection in rhinoceros in a tick. Elephants and their ticks were all infected with a species of Ehrlichia like that identified in Japanese deer. The prevalence of Babesia spp., Theileria spp. and Ehrlichia spp. in ticks was higher than that of their elephant hosts. About 13.5% of elephants were positive for Theileria or Babesia while 51% of A. thollonii ticks and 27% of R. humeralis ticks were positive for Theileria or Babesia. Moreover, 5.8% of elephants were positive for Ehrlichia or Anaplasma compared to 19.5% in A. thollonii and 18% in R. humeralis. There was no association between the positive result in ticks and that of their elephant hosts for either Babesia spp., Theileria spp. or Ehrlichia spp. Our study reveals that the African elephants are naturally infected with Babesia spp and Ehrlichia spp and opens up an opportunity for further studies to determine the role of elephant as reservoirs of tick-borne pathogens, and to investigate their potential in spreading these pathogens as they range extensively. The presence of T. bicornis in A. thollonii also suggests a need for experiments to confirm its vector competence.


Assuntos
Anaplasma/isolamento & purificação , Babesia/isolamento & purificação , Ehrlichia/isolamento & purificação , Elefantes/parasitologia , Theileria/isolamento & purificação , Carrapatos/microbiologia , Carrapatos/parasitologia , Anaplasma/genética , Anaplasma/fisiologia , Animais , Babesia/genética , Babesia/fisiologia , Ehrlichia/genética , Ehrlichia/fisiologia , RNA Ribossômico 18S/genética , Theileria/genética , Theileria/fisiologia
6.
Infect Genet Evol ; 58: 269-278, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337258

RESUMO

Asymptomatic tick-borne infections are a common feature in wild herbivores. In human-dominated habitats, snare injuries to wild herbivores are common and are likely to co-occur with enzootic infections. The influence of injury on pattern, course and outcome of enzootic infection in wild herbivores is unknown. We identified Theileria species infecting zebra and assessed the relationship between host injury-status and parasitaemia, parasite diversity and selection regimes. We also determined host leucocyte differential as this can reveal mechanisms by which injuries influence infections. Theileria infecting zebra was identified using PCR and sequencing of the V4 region of the 18 s rRNA gene and confirmed with phylogenetic analyses. The influence of injury status on parasite infection patterns, genetic diversity and selection were assessed using population genetic tools. Parasitaemia estimated from prevalence and leucocyte differential were determined from microscopic examination of Giemsa stained thin blood smears. Phylogenetic and sequence analyses revealed that the zebra population studied was infected with three Theileria equi haplotypes. Parasitaemia was lower among injured compared to non-injured animals and lower during dry than wet season. Mean (±SD) genetic diversity was 0.386 (±0.128) in injured and 0.513 (±0.144) in non-injured zebra (P = .549). Neutrality tests indicated that T. equi is under strong purifying selection in injured females (Li & Fu's D* = -2.037) and demographic expansion in all zebra during the wet season (Tajima D = -1.904). Injured zebras had a higher median per cent of neutrophils (64% vs 37%) a lower median per cent of basophils (0% vs 1%) and eosinophils (2% vs 4.5%) than non-injured animals, suggesting a heightened immune response and a shift from a Th2 to Th1 T-Cell response favoring the elimination of intracellular parasites in injured animals. This study demonstrates the utility of population genetics in revealing factors influencing parasite diversity and infection patterns.


Assuntos
Equidae/parasitologia , Variação Genética , Theileria/genética , Theileriose/complicações , Theileriose/parasitologia , Ferimentos e Lesões/complicações , Animais , Biomarcadores , Diferenciação Celular , Equidae/imunologia , Feminino , Geografia , Haplótipos , Imunoglobulina E/imunologia , Quênia , Contagem de Leucócitos , Masculino , Filogenia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Theileria/imunologia , Theileriose/imunologia
7.
Ecohealth ; 13(4): 708-719, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27554373

RESUMO

Very little is known about the influence of massive and long distance migration on parasite epidemiology. Migration can simultaneously minimize exposure to common parasites in their habitats and increase exposure to novel pathogens from new environments and habitats encountered during migration, while physiological stress during long distance movement can lead to immune suppression, which makes migrants vulnerable to parasites. In this paper, we investigated the diversity, prevalence, parasite load, co-infection patterns and predilection sites of adult gastrointestinal helminths in 130 migrating wildebeests and tested for their relation with animal age, sex and migration time (which also could indicate different migration routes), and compared them with the non-migratory wildebeest. Surprisingly, only four parasite species were found, Oesophagostomum columbianum, Haemonchus placei, Calicophoron raja and Moniezia expansa, which were lower than in non-migratory wildebeest reported in the literature. These parasites were generalists, infecting livestock, and suggests that wildebeest and livestock, because of their interaction during migration, have a cross-infection risk. There was a negative relation between parasites diversity, prevalence and intensity of infection, and host age, which suggests that wildebeests acquire protective immunity against these parasites as they get older. Prevalence and intensity of infection were higher among wildebeest crossing the Mara Bridge (early migrants) compared to those crossing the Serena (late migrants), which suggests that early migrants (or migrants originating from different areas) have varying infection intensities. The prevalence and intensity of infection were higher in males compared to females and may be due to ecological, behavioural, or physiological differences between males and females. Our findings compared to those of previous studies suggest that migration may provide a mechanism to minimize exposure of hosts to common parasites through migratory escape, but this result awaits examination of helminths epidemiology of non-migratory wildebeests from areas of migrant origins. The potential parasitic cross-infection between wildebeests and livestock is a real risk to be taken into account in the management of wildebeest migration corridors.


Assuntos
Migração Animal , Ruminantes/parasitologia , Animais , Ecossistema , Feminino , Helmintos , Masculino , Parasitos
8.
Int J Vet Sci Med ; 4(2): 27-32, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30255036

RESUMO

The use of biopsy darts for remote collection of tissue samples from free-ranging terrestrial and aquatic animal species has gained popularity in the recent past. The success of darting is very important since scientists may not have many chances to re-dart the same animal, especially with the free-ranging elusive wildlife species. We used wildebeest (Connochaetes taurinus) as a model to estimate the optimum shooting distance, pressure and the shot part of the body through which a researcher can optimize the success and amount of tissue collected from similar wild land mammalian species. Wildebeests were darted at six categories of distances ranging between 10 and 45 m and dart gun pressures of 5-14 millibar. The number of failed darts increased by increasing the darting distance: 0% (10 m), 0% (20 m), 6% (30 m), 20% (35 m), 71% (40 m), and 67% (45 m). There was a notable effect of the distances on the amount of tissue collected 20 m offered the best results. Dart gun pressure had no effect on the amount of tissue samples obtained. The amount of tissue obtained from successful darts was the same whether the animal was darted on the shoulder or thigh. In this paper, we present a practical guideline for remote biopsy darting of wildebeest to obtain optimum amount of tissue samples, which could be generalized for similar wild land mammalian species.

9.
Infect Ecol Epidemiol ; 5: 30106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26679561

RESUMO

BACKGROUND: Rift Valley fever (RVF) is a fatal arthropod-borne zoonotic disease of livestock and humans. Since the identification of RVF in Kenya in the 1930s, repeated epizootics and epidemics coinciding with El Niño events have occurred in several locations in Africa and Saudi Arabia, causing mass deaths of livestock and humans. RVF is of great interest worldwide because of its negative effect on international livestock trade and its potential to spread globally. The latter is due to the increasing incidence of extreme climatic phenomena caused by global warming, as well as to the increase in global trade and international travel. How RVF is maintained and sustained between epidemics and epizootics is not clearly understood, but it has been speculated that wildlife reservoirs and trans-ovarian transmission in the vector may be important. Several studies have examined the role of wildlife and livestock in isolation or in a limited geographical location within the one country over a short time (usually less than a year). In this study, we examined the seroprevalence of anti-RVF antibodies in cattle and several wildlife species from several locations in Kenya over an inter-epidemic period spanning up to 7 years. METHODS: A serological survey of immunoglobulin G (IgG) antibodies to RVF using competitive ELISA was undertaken on 297 serum samples from different wildlife species at various locations in Kenya. The samples were collected between 2008 and 2015. Serum was also collected in 2014 from 177 cattle from Ol Pejeta Conservancy; 113 of the cattle were in close contact with wildlife and the other 64 were kept separate from buffalo and large game by an electric fence. RESULTS: The seroprevalence of RVF virus (RVFV) antibody was 11.6% in wildlife species during the study period. Cattle that could come in contact with wildlife and large game were all negative for RVFV. The seroprevalence was relatively high in elephants, rhinoceros, and buffalo, but there were no antibodies in zebras, baboons, vervet monkeys, or wildebeest. CONCLUSIONS: Diverse species in conservation areas are exposed to RVFV. RVFV exposure in buffalo may indicate distribution of the virus over wide geographical areas beyond known RVFV foci in Kenya. This finding calls for thorough studies on the epizootology of RVFV in specific wildlife species and locations.

10.
Ecol Evol ; 5(22): 5216-5229, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151125

RESUMO

Harvesting of wild populations can cause the evolution of morphological, behavioral, and life history traits that may compromise natural or sexual selection. Despite the vulnerability of large mammals to rapid population decline from harvesting, the evolutionary effects of harvesting on mega-fauna have received limited attention. In elephants, illegal ivory harvesting disproportionately affects older age classes and males because they carry large tusks, but its' effects on tusk size for age or tusk size for stature are less understood. We tested whether severe historical elephant harvests eliminated large tuskers among survivors and whether elephants born thereafter had smaller tusks. Adjusting for the influence of shoulder height - a metric strongly correlated with body size and age and often used as a proxy for age - we compared tusk size for elephants sampled in 1966-1968, prior to severe ivory harvesting in the late 1970s and early 1980s, with tusk size of survivors and elephants born during population recovery in the mid-1990s. In a regional population, tusk length declined by ˜21% in male and by ˜27% in female elephants born during population recovery, while tusk length declined by 22% in males and 37% in females among survivors. Tusk circumference at lip declined by 5% in males but not in females born during population recovery, whereas tusk circumference reduced by 8% in male and by 11% in female survivors. In a single subpopulation, mean tusk length at mean basal tusk circumference declined by 12.4% in males and 21% in females. Tusk size varied between elephant social groups. Tusk homogeneity within social groups and the often high genetic similarity within social groups suggest that tusk size may be heritable. Our findings support a hypothesis of selection of large tuskers by poachers as a driver of the decline in tusk size for age proxy and contemporary tusk evolution in African elephants.

11.
PLoS One ; 9(4): e93408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705319

RESUMO

Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental, and host-related factors that influence transmission patterns.


Assuntos
Ecossistema , Elefantes/microbiologia , Infecções por Escherichia coli/transmissão , Hierarquia Social , Especificidade de Hospedeiro , Animais , Animais Selvagens , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Elefantes/fisiologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Feminino , Fluxo Gênico , Variação Genética , Haplótipos , Quênia , Masculino
12.
PLoS One ; 7(2): e31382, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347468

RESUMO

Factors that influence learning and the spread of behavior in wild animal populations are important for understanding species responses to changing environments and for species conservation. In populations of wildlife species that come into conflict with humans by raiding cultivated crops, simple models of exposure of individual animals to crops do not entirely explain the prevalence of crop raiding behavior. We investigated the influence of life history milestones using age and association patterns on the probability of being a crop raider among wild free ranging male African elephants; we focused on males because female elephants are not known to raid crops in our study population. We examined several features of an elephant association network; network density, community structure and association based on age similarity since they are known to influence the spread of behaviors in a population. We found that older males were more likely to be raiders than younger males, that males were more likely to be raiders when their closest associates were also raiders, and that males were more likely to be raiders when their second closest associates were raiders older than them. The male association network had sparse associations, a tendency for individuals similar in age and raiding status to associate, and a strong community structure. However, raiders were randomly distributed between communities. These features of the elephant association network may limit the spread of raiding behavior and likely determine the prevalence of raiding behavior in elephant populations. Our results suggest that social learning has a major influence on the acquisition of raiding behavior in younger males whereas life history factors are important drivers of raiding behavior in older males. Further, both life-history and network patterns may influence the acquisition and spread of complex behaviors in animal populations and provide insight on managing human-wildlife conflict.


Assuntos
Produtos Agrícolas , Elefantes/psicologia , Comportamento Alimentar/psicologia , Apoio Social , Fatores Etários , Animais , Comportamento Animal , Masculino
13.
Mol Ecol ; 21(3): 765-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21880086

RESUMO

Genetic tools are increasingly valuable for understanding the behaviour, evolution, and conservation of social species. In African elephants, for instance, genetic data provide basic information on the population genetic causes and consequences of social behaviour, and how human activities alter elephants' social and genetic structures. As such, African elephants provide a useful case study to understand the relationships between social behaviour and population genetic structure in a conservation framework. Here, we review three areas where genetic methods have made important contributions to elephant behavioural ecology and conservation: (1) understanding kin-based relationships in females and the effects of poaching on the adaptive value of elephant relationships, (2) understanding patterns of paternity in elephants and how poaching can alter these patterns, and (3) conservation genetic tools to census elusive populations, track ivory, and understand the behavioural ecology of crop-raiding. By comparing studies from populations that have experienced a range of poaching intensities, we find that human activities have a large effect on elephant behaviour and genetic structure. Poaching disrupts kin-based association patterns, decreases the quality of elephant social relationships, and increases male reproductive skew, with important consequences for population health and the maintenance of genetic diversity. In addition, we find that genetic tools to census populations or gather forensic information are almost always more accurate than non-genetic alternatives. These results contribute to a growing understanding of poaching on animal behaviour, and how genetic tools can be used to understand and conserve social species.


Assuntos
Elefantes , Hierarquia Social , População/genética , Comportamento Social , Animais , Conservação dos Recursos Naturais , Variação Genética , Endogamia , Repetições de Microssatélites , Paternidade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...