Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(4): e0118123, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38488373

RESUMO

In this study, we sequence, assemble, and annotate Kosakonia cowanii strain W006, isolated from seeds of Triticum aestivum L. W006 has a single circular chromosome of 4,788,099 bp and 4,466 genes, with a mean G +C content of 56.1%.

2.
Microbiol Resour Announc ; 12(10): e0068723, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37747250

RESUMO

In this study, we performed nanopore sequencing of the genome of Paenibacillus amylolyticus strain W018, isolated from the seeds of winter wheat, cv. Bezostaya 100. The genome size is 7.07 Mb, with a GC content of 45.8%, and contains 8,190 genes.

3.
Plants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202382

RESUMO

Endophytic bacteria can be used to overcome the effect of salinity stress and promote plant growth and nutrient uptake. Bacillus safensis colonizes a wide range of habitats due to survival in extreme environments and unique physiological characteristics, such as a high tolerance for salt, heavy metals, and ultraviolet and gamma radiations. The aim of our study was to examine the salt resistance of the endophytic strain TS3 B. safensis and its ability to produce phytohormones and verify its effect on plant yield in field trials and the alleviation of salt stress in pot experiments. We demonstrate that the strain TS3 is capable of producing enzymes and phytohormones such as IAA, ABA and tZ. In pot experiments with radish and oat plants in salinization, the strain TS3 contributed to the partial removal of the negative effect of salinization. The compensatory effect of the strain TS3 on radish plants during salinization was 46.7%, and for oats, it was 108%. We suppose that such a pronounced effect on the plants grown and the salt stress is connected with its ability to produce phytohormones. Genome analysis of the strain TS3 showed the presence of the necessary genes for the synthesis of compounds responsible for the alleviation of the salt stress. Strain B. safensis TS3 can be considered a promising candidate for developing biofertilizer to alleviate salt stress and increase plant yield.

4.
Plants (Basel) ; 11(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365445

RESUMO

The aim of our research was to study the endosphere of four halophytic plants: Salicornia europaea L., Salsola australis (R.Br.), Bassia sedoides (Pall.) and Kochia prostrata (L.) Schrad. from arid and saline areas of the Stavropol Territory, Russia. In total, 28 endophyte strains were isolated from the roots and stems of these halophytic plants. Most of the isolates (23 out of 28) were identified as Bacillus sp. while others belonged to the genera Oceanobacillus, Paenibacillus, Pantoea, Alcaligenes and Myroides. Three strains of Bacillus sp. (Se5R, Se1-1R, and Se1-3S), isolated from the S. europaea were capable of growth at 55 °C and in 10% of NaCl. Strains Se1-4S, Kp20-2S, and Bs11-2S Bacillus sp. (isolated from the S. australis, K. prostrata and B. sedoides, respectively) demonstrated strong plant growth promoting activity: 85-265% over control lettuce plants and a high degree of growth suppression (59.1-81.2%) of pathogenic fungi Fusarium oxysporum, Bipolaris sorokiniana and Rhizoctonia solani. Selected strains can be promising candidates for the development of bioinoculants to facilitate salt soil phytoremediation and be beneficial for mitigating the salt stress to the plants growing in salt-affected habitats.

5.
Microbiol Resour Announc ; 11(11): e0064722, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250876

RESUMO

Some strains of Bacillus vallismortis have been reported to be efficient plant-growth-promoting bacteria as well as inducers of systemic resistance. Here, we report the draft genome sequence of Bacillus vallismortis strain BL01, isolated from the roots of Artemisia lerchiana Web.

6.
Microbiol Resour Announc ; 11(11): e0081622, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36301120

RESUMO

Tomato stem endophyte Bacillus safensis TS3 was isolated from surface-sterilized stems of greenhouse tomato plants. Here, we sequenced the complete genome of this strain to understand the molecular mechanisms underlying its beneficial activities.

7.
Plants (Basel) ; 11(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35890450

RESUMO

The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors "genotype" and "inoculation" were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33-62%), a reduction in the time for passing the stages of ontogenesis (by 2-3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.

8.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414312

RESUMO

The plant growth-promoting bacterium Bacillus velezensis BS89 was isolated from the rhizosphere of winter wheat. Strain BS89 has the ability to promote plant growth and produce a mix of auxins and vitamins. Here, we sequenced the complete genome of this strain to understand the molecular mechanisms underlying its beneficial activities.

9.
Front Microbiol ; 11: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063892

RESUMO

Two transgenic strains of Rhizobium leguminosarum bv. viciae, 3841-PsMT1 and 3841-PsMT2, were obtained. These strains contain the genetic constructions nifH-PsMT1 and nifH-PsMT2 coding for two pea (Pisum sativum L.) metallothionein genes, PsMT1 and PsMT2, fused with the promoter region of the nifH gene. The ability of both transgenic strains to form nodules on roots of the pea wild-type SGE and the mutant SGECdt, which is characterized by increased tolerance to and accumulation of cadmium (Cd) in plants, was analyzed. Without Cd treatment, the wild type and mutant SGECdt inoculated with R. leguminosarum strains 3841, 3841-PsMT1, or 3841-PsMT2 were similar histologically and in their ultrastructural organization of nodules. Nodules of wild-type SGE inoculated with strain 3841 and exposed to 0.5 µM CdCl2 were characterized by an enlarged senescence zone. It was in stark contrast to Cd-treated nodules of the mutant SGECdt that maintained their proper organization. Cadmium treatment of either wild-type SGE or mutant SGECdt did not cause significant alterations in histological organization of nodules formed by strains 3841-PsMT1 and 3841-PsMT2. Although some abnormalities were observed at the ultrastructural level, they were less pronounced in the nodules of strain 3841-PsMT1 than in those formed by 3841-PsMT2. Both transgenic strains also differed in their effects on pea plant growth and the Cd and nutrient contents in shoots. In our opinion, combination of Cd-tolerant mutant SGECdt and the strains 3841-PsMT1 or 3841-PsMT2 may be used as an original model for study of Cd tolerance mechanisms in legume-rhizobial symbiosis and possibilities for its application in phytoremediation or phytostabilization technologies.

10.
Microbiol Resour Announc ; 8(48)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776225

RESUMO

The endophytic strains Bacillus amyloliquefaciens V417 and V167 were isolated from cultured grape plants. We sequenced the complete genomes of these strains to reveal their potential beneficial properties for plant growth promotion and control of fungal pathogens. Genes responsible for the synthesis of antimicrobial compounds and siderophores were identified.

11.
Ecol Evol ; 9(18): 10377-10386, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31624556

RESUMO

We hypothesized that population diversities of partners in nitrogen-fixing rhizobium-legume symbiosis can be matched for "interplaying" genes. We tested this hypothesis using data on nucleotide polymorphism of symbiotic genes encoding two components of the plant-bacteria signaling system: (a) the rhizobial nodA acyltransferase involved in the fatty acid tail decoration of the Nod factor (signaling molecule); (b) the plant NFR5 receptor required for Nod factor binding. We collected three wild-growing legume species together with soil samples adjacent to the roots from one large 25-year fallow: Vicia sativa, Lathyrus pratensis, and Trifolium hybridum nodulated by one of the two Rhizobium leguminosarum biovars (viciae and trifolii). For each plant species, we prepared three pools for DNA extraction and further sequencing: the plant pool (30 plant indiv.), the nodule pool (90 nodules), and the soil pool (30 samples). We observed the following statistically significant conclusions: (a) a monotonic relationship between the diversity in the plant NFR5 gene pools and the nodule rhizobial nodA gene pools; (b) higher topological similarity of the NFR5 gene tree with the nodA gene tree of the nodule pool, than with the nodA gene tree of the soil pool. Both nonsynonymous diversity and Tajima's D were increased in the nodule pools compared with the soil pools, consistent with relaxation of negative selection and/or admixture of balancing selection. We propose that the observed genetic concordance between NFR5 gene pools and nodule nodA gene pools arises from the selection of particular genotypes of the nodA gene by the host plant.

12.
Antonie Van Leeuwenhoek ; 107(4): 911-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25603982

RESUMO

The Gram-negative, rod-shaped slow-growing strains Vaf-17, Vaf-18(T) and Vaf-43 were isolated from the nodules of Vavilovia formosa plants growing in the hard-to-reach mountainous region of the North Ossetian State Natural Reserve (north Caucasus, Russian Federation). The sequencing of 16S rDNA (rrs), ITS region and five housekeeping genes (atpD, dnaK, recA, gyrB and rpoB) showed that the isolated strains were most closely related to the species Bosea lathyri (class Alphaproteobacteria, family Bradyrhizobiaceae) which was described for isolates from root nodules of Lathyrus latifolius. However the sequence similarity between the isolated strains and the type strain B. lathyri LMG 26379(T) for the ITS region was 90 % and for the housekeeping genes it was ranged from 92 to 95 %. All phylogenetic trees, except for the rrs-dendrogram showed that the isolates from V. formosa formed well-separated clusters within the Bosea group. Differences in phenotypic properties of the B. lathyri type strain and the isolates from V. formosa were studied using the microassay system GENIII MicroPlate BioLog. Whole-cell fatty acid analysis showed that the strains Vaf-17, Vaf-18(T) and Vaf-43 had notable amounts of C16:0 (4.8-6.0 %), C16:0 3-OH (6.4-6.6 %), C16:1 ω5c (8.8-9.0 %), C17:0 cyclo (13.5-13.9 %), C18:1 ω7c (43.4-45.4 %), C19:0 cyclo ω8c (10.5-12.6 %) and Summed Feature (SF) 3 (6.4-8.0 %). The DNA-DNA relatedness between the strains Vaf-18(T) and B. lathyri LMG 26379(T) was 24.0 %. On the basis of genotypic and phenotypic analysis a new species Bosea vaviloviae sp. nov. (type strain RCAM 02129(T) = LMG 28367(T) = Vaf-18(T)) is proposed.


Assuntos
Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/isolamento & purificação , Fabaceae/microbiologia , Técnicas de Tipagem Bacteriana , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ácidos Graxos/análise , Genes Essenciais , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas , Federação Russa , Análise de Sequência de DNA
13.
Antonie Van Leeuwenhoek ; 105(2): 389-99, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292378

RESUMO

Sixteen bacterial strains were isolated from root nodules of Vavilovia formosa plants originated from the North Ossetian State Natural Reserve (Caucasus, Russia). Phylogenetic analysis of these strains was performed using partial 16S rRNA gene and internally transcribed spacer (ITS) sequences. The results showed that the isolates belong to three families of root nodule bacteria. Twelve of them were related to the genus Rhizobium (family Rhizobiaceae) but four strains can be most probably identified as Phyllobacterium-related (family Phyllobacteriaceae), Bosea- and Rhodopseudomonas-related (family Bradyrhizobiaceae). Amplified fragment length polymorphism clustering was congruent with ITS phylogeny but displayed more variability for Rhizobium isolates, which formed a single group at the level of 30 % similarity. We expect that the isolates obtained can belong to new taxa at genus, species or subspecies levels. The results of PCR amplification of the nodulation genes nodC and nodX showed their presence in all Rhizobium isolates and one Rhodopseudomonas-related isolate. The nodC gene sequences of V. formosa isolates were closely related to those of the species Rhizobium leguminosarum bv. viciae but formed separate clusters and did not intermingle with any reference strains. The presence of the nodX gene, which is necessary for nodulation of Afghan peas (Pisum sativum L.) originated from the Middle East, allows the speculation that these wild-type pea cultivars may be the closest existing relatives of V. formosa. Thus, the studies of genetic diversity and symbiotic genes of V. formosa microsymbionts provide the primary information about their phylogeny and contribute to the conservation of this relict leguminous species.


Assuntos
Bradyrhizobiaceae/isolamento & purificação , Fabaceae/microbiologia , Variação Genética , Phyllobacteriaceae/isolamento & purificação , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Proteínas de Bactérias/genética , Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Phyllobacteriaceae/classificação , Phyllobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Federação Russa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA