Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686188

RESUMO

The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.


Assuntos
Aterosclerose , Plaquetas , Animais , Ratos , Xantina/farmacologia , Adenosina
2.
Int Immunopharmacol ; 119: 110264, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37159965

RESUMO

Asthma is a heterogeneous, chronic respiratory disease characterized by airway inflammation and remodeling. Phosphodiesterase (PDE) inhibitors represent one of the intensively studied groups of potential anti-asthmatic agents due to their affecting both airway inflammation and remodeling. However, the effect of inhaled pan-PDE inhibitors on allergen induced asthma has not been reported to date. In this study we investigated the impact of two, representative strong pan-PDE inhibitors from the group of 7,8-disubstituted derivatives of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione: compound 38 and 145, on airway inflammation and remodeling in murine model of ovalbumin (OVA)-challenged allergic asthma. Female Balb/c mice were sensitized and challenged with OVA, 38 and 145 were administrated by inhalation, before each OVA challenge. The inhaled pan-PDE inhibitors markedly reduced the OVA-induced airway inflammatory cell infiltration, eosinophil recruitment, Th2 cytokine level in bronchoalveolar lavage fluid, as well as both, total and OVA-specific IgE levels in plasma. In addition, inhaled 38 and 145 decreased many typical features of airway remodeling, including goblet cell metaplasia, mucus hypersecretion, collagen overproduction and deposition, as well as Tgfb1, VEGF, and α-SMA expression in airways of allergen challenged mice. We also demonstrated that both 38 and 145 alleviate airway inflammation and remodelling by inhibition of the TGF-ß/Smad signaling pathway activated in OVA-challenged mice. Taken together, these results suggest that the investigated pan-PDE inhibitors administered by inhalation are dual acting agents targeting both airway inflammation and remodeling in OVA-challenged allergic asthma and may represent promising, anti-asthmatic drug candidates.


Assuntos
Antiasmáticos , Asma , Feminino , Camundongos , Animais , Ovalbumina , Modelos Animais de Doenças , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/metabolismo , Asma/induzido quimicamente , Asma/tratamento farmacológico , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Antiasmáticos/uso terapêutico , Camundongos Endogâmicos BALB C , Remodelação das Vias Aéreas , Pulmão/metabolismo
3.
Toxicol Appl Pharmacol ; 457: 116318, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414119

RESUMO

Phosphodiesterase (PDE) inhibitors represent a wide class of chemically different compounds that have been extensively studied in recent years. Their anti-inflammatory and anti-fibrotic effects are particularly desirable in the treatment of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Due to diversified expression of individual PDEs within cells and/or tissues as well as PDE signaling compartmentalization, pan-PDE inhibitors (compounds capable of simultaneously blocking various PDE subtypes) are of particular interest. Recently, a large group of 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione (theophylline) was designed and synthesized. These compounds were characterized as potent pan-PDE inhibitors and their prominent anti-inflammatory and anti-fibrotic activity in vitro has been proved. Herein, we investigated a general in vitro safety profile and pharmacokinetic characteristics of two leading compounds from this group: a representative compound with N'-benzylidenebutanehydrazide moiety (38) and a representative derivative containing N-phenylbutanamide fragment (145). Both tested pan-PDE inhibitors revealed no cytotoxic, mutagenic, and genotoxic activity in vitro, showed moderate metabolic stability in mouse and human liver microsomes, as well as fell into the low or medium permeation category. Additionally, 38 and 145 revealed a lack of interaction with adenosine receptors, including A1, A2A, and A2B. Pharmacokinetic analysis revealed that both tested 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione were effectively absorbed from the peritoneal cavity. Simultaneously, they were extensively distributed to mouse lungs and after intraperitoneal (i.p.) administration were detected in bronchoalveolar lavage fluid. These findings provide evidence that investigated compounds represent a new drug candidates with a favorable in vitro safety profile and satisfactory pharmacokinetic properties after a single i.p. administration. As the next step, further pharmacokinetic studies after multiple i.p. and p.o. doses will be conducted to ensure effective 38 and 145 serum and lung concentrations for a longer period of time. In summary, 7,8-disubstituted derivatives of 1,3-dimethyl-7H-purine-2,6-dione represent a promising compounds worth testing in animal models of chronic respiratory diseases, the etiology of which involves various PDE subtypes.

4.
Pharmacol Rep ; 74(5): 982-997, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930193

RESUMO

BACKGROUND: To verify the validity of the proposed pain treatment approach, which is based on concomitant blocking of the Transient Receptor Potential Ankyrin 1 (TRPA1) channel and phosphodiesterases (PDEs) 4B/7A activity, we continued our pharmacological studies on 8-alkoxypurine-2,6-diones selected based on previous in vitro screening. METHODS: Derivatives 17, 31, and 36 were pharmacologically evaluated in vivo using the formalin test and oxaliplatin-induced neuropathic pain: the von Frey and the cold plate tests, and in the carrageenan-induced edema model. Compound 36, which turned out to be the most promising, was further evaluated in the collagen-induced arthritis model. The pharmacokinetic parameters of this compound were also estimated. RESULTS: All the tested compounds exhibited significant analgesic and anti-inflammatory activities. Compound 36 was additionally characterized by an antiarthritic effect and showed a favorable pharmacokinetic profile in rats. CONCLUSION: The compounds evaluated in this study represent a new class of derivatives with analgesic and anti-inflammatory activities that involve TRPA1 antagonism and PDE4/7 inhibition.


Assuntos
Anquirinas , Canais de Potencial de Receptor Transitório , Animais , Ratos , Canal de Cátion TRPA1 , Carragenina , Oxaliplatina , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Purinas/farmacologia , Diester Fosfórico Hidrolases
5.
Pharmaceutics ; 14(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631676

RESUMO

Current treatment strategies of autoimmune diseases (ADs) display a limited efficacy and cause numerous adverse effects. Phosphodiesterase (PDE)4 and PDE7 inhibitors have been studied recently as a potential treatment of a variety of ADs. In this study, a PK/PD disease progression modeling approach was employed to evaluate effects of a new theophylline derivative, compound 34, being a strong PDE4 and PDE7 inhibitor. Activity of the studied compound against PDE1 and PDE3 in vitro was investigated. Animal models of multiple sclerosis (MS), rheumatoid arthritis (RA), and autoimmune hepatitis were utilized to assess the efficacy of this compound, and its pharmacokinetics was investigated in mice and rats. A new PK/PD disease progression model of compound 34 was developed that satisfactorily predicted the clinical score-time courses in mice with experimental encephalomyelitis that is an animal model of MS. Compound 34 displayed a high efficacy in all three animal models of ADs. Simultaneous inhibition of PDE types located in immune cells may constitute an alternative treatment strategy of ADs. The PK/PD encephalomyelitis and arthritis progression models presented in this study may be used in future preclinical research, and, upon modifications, may enable translation of the results of preclinical investigations into the clinical settings.

6.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35455420

RESUMO

Airway remodeling is a pathological process that accompanies many chronic lung diseases. One of the important players in this process are epithelial cells, which under the influence of pro-inflammatory and pro-fibrotic factors present in the airway niche, actively participate in the remodeling process by increasing extracellular matrix secretion, acquiring migration properties, and overproducing pro-fibrotic transducers. Here, we investigated the effect of three new 8-arylalkylamino- and 8-alkoxy-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl-N-(5-(tert-butyl)-2-hydroxyphenyl)butanamides (1, 2, and 3), representing prominent pan-phosphodiesterase (pan-PDE) inhibitors on transforming growth factor type ß (TGF-ß)-induced alveolar epithelial type II cells (A549 cell line) of a pro-fibrotic phenotype. Our results demonstrate for the first time the strong activity of pan-PDE inhibitors in the prevention of TGF-ß-induced mesenchymal markers' expression and A549 cells' migration. We also showed an increased p-CREB and decreased p-Smad-2 phosphorylation in TGF-ß-induced A549 cells treated with 1, 2, and 3 derivatives, thereby confirming a pan-PDE inhibitor mesenchymal phenotype reducing effect in alveolar epithelial type II cells via suppression of the canonical Smad signaling pathway. Our observations confirmed that PDE inhibitors, and especially those active against various isoforms involved in the airway remodeling, constitute an interesting group of compounds modulating the pro-fibrotic response of epithelial cells.

7.
Bioorg Chem ; 117: 105409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749117

RESUMO

Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32-35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type ß (TGF-ß) and interleukin 13 (IL-13). Compounds 32-35 and 38 significantly reduced both IL-13- and TGF-ß-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Antioxidantes/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Animais , Antiasmáticos/síntese química , Antiasmáticos/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antifibróticos/síntese química , Antifibróticos/química , Antioxidantes/síntese química , Antioxidantes/química , Humanos , Camundongos , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Células RAW 264.7
8.
Bioorg Med Chem Lett ; 49: 128318, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391892

RESUMO

Lipophilicity is one of the principal QSAR parameters which influences among others the pharmacodynamics and pharmacokinetic properties of a drug candidates. In this paper, the lipophilicity of 14 amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 channel antagonists and phosphodiesterase 4/7 inhibitors with analgesic activity were investigated, using reversed-phase thin-layer chromatography method. It was observed that the retention behavior of the analyzed compounds was dependent on their structural features i.e. an aliphatic linker length, a kind of substituent at 8 position of purine-2,6-dione scaffold as well as on a substitution in a phenyl group. The experimental parameters (RM0) were compared with computationally calculated partition coefficient values by Principal Component Analysis (PCA). To verify the influence of lipophilic parameter of the investigated compounds on their biological activity the Kruskal-Wallis test was performed. The lowest lipophilicity was observed for the compounds with weak PDE4/7 inhibitory potency. The differences between the lipophilicity of potent inhibitors and inactive compounds were statistically significant. It was found that the presence of more lipophilic propoxy- or butoxy- substituents as well as the elongation of the aliphatic chain to propylene one between the purine-2,6-dione core and amide group were preferable for desired multifunctional activity.


Assuntos
Analgésicos/química , Benzenoacetamidas/química , Inibidores da Fosfodiesterase 4/química , Canal de Cátion TRPA1/antagonistas & inibidores , Xantinas/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Fenilbutiratos/química , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade
9.
Future Med Chem ; 13(18): 1497-1514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253032

RESUMO

Aims: 5-HT1A receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT1A receptor antagonistic properties. Materials & methods: Thirty-three amides were designed and evaluated in silico for their drug-likeness. The synthesized compounds were tested in vitro for their 5-HT1A receptor affinity and functional profile. Moreover, their selectivity over 5-HT7, 5-HT2A and D2 receptors and ability to inhibit phosphodiesterases were evaluated. Results: A selected 5-HT1A receptor antagonist 20 (Ki = 35 nM, Kb = 4.9 nM) showed procognitive and antidepressant activity in vivo. Conclusion: Novel 5-HT1A receptor antagonists were discovered and shown as potential psychotropic drugs.


Assuntos
Amidas/síntese química , Antidepressivos/síntese química , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Amidas/farmacologia , Animais , Antidepressivos/farmacologia , Comportamento Animal , Desenho de Fármacos , Humanos , Masculino , Modelos Moleculares , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Ratos Wistar , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade
10.
Pharmaceutics ; 13(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919375

RESUMO

This study aimed to assess the efficacy and explore the mechanisms of action of a potent phosphodiesterase (PDE)7A and a moderate PDE4B inhibitor GRMS-55 in a mouse model of autoimmune hepatitis (AIH). The concentrations of GRMS-55 and relevant biomarkers were measured in the serum of BALB/c mice with concanavalin A (ConA)-induced hepatitis administered with GRMS-55 at two dose levels. A semi-mechanistic PK/PD/disease progression model describing the time courses of measured biomarkers was developed. The emetogenicity as a potential side effect of the studied compound was evaluated in the α2-adrenoceptor agonist-induced anesthesia model. The results indicate that liver damage observed in mice challenged with ConA was mainly mediated by TNF-α and IFN-γ. GRMS-55 decreased the levels of pro-inflammatory mediators and the transaminase activities in the serum of mice with AIH. The anti-inflammatory properties of GRMS-55, resulting mainly from PDE7A inhibition, led to a high hepatoprotective activity in mice with AIH, which was mediated by an inhibition of pro-inflammatory signaling. GRMS-55 did not induce the emetic-like behavior. The developed PK/PD/disease progression model may be used in future studies to assess the potency and explore the mechanisms of action of new investigational compounds for the treatment of AIH.

11.
Curr Med Chem ; 28(29): 6082-6094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33588717

RESUMO

BACKGROUND: There is currently no drug that slows the process of neurodegeneration or alleviates the cognitive and depressive symptoms in patients with Alzheimer's disease. Due to the increasing number of Alzheimer's patients, there is an urgent need to develop novel drugs with neuroprotective, procognitive, and antidepressant properties. OBJECTIVE: The aim of this study was to design, synthesize, and evaluate novel aminoalkanamides with serotonin 5-HT1A/5-HT;7 receptor affinity and phosphodiesterase (PDE) inhibitory activity as a new approach to combat neurodegeneration and symptoms of Alzheimer's disease. METHODS: The newly designed compounds were synthesized using classical methods of organic chemistry and tested in vitro for their receptor affinity, functional profile, enzyme inhibition, and ADME properties. The neuroprotective effect against H2O2-induced increase of reactive oxygen species level was tested in SH-SY5Y cells. The novel object recognition and forced swimming tests were used to evaluate the procognitive and antidepressant activity, respectively. RESULTS: Synthesized aminoalkanamides were characterized as potent 5-HT1Areceptor antagonists with additional 5-HT7 receptor antagonistic properties and PDE4B inhibitory activity. Selected compound 15 showed neuroprotective, procognitive, and antidepressant properties. In addition, compound 15 revealed suitable ADME properties expressed as good membrane permeability and high metabolic stability. CONCLUSION: This study revealed a new class of compounds that may be useful in the search for an effective drug in the alleviation of neurodegeneration and symptoms of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Antidepressivos/uso terapêutico , Humanos , Peróxido de Hidrogênio/uso terapêutico , Receptores de Serotonina , Serotonina
12.
Curr Med Chem ; 28(18): 3535-3553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32940168

RESUMO

Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disease that affects the cognition, behavior, and daily activities of individuals. Studies indicate that this disease is characterized by several pathological mechanisms, including the accumulation of amyloid-beta peptide, hyperphosphorylation of tau protein, impairment of cholinergic neurotransmission, and increase in inflammatory responses within the central nervous system. Chronic neuroinflammation associated with AD is closely related to disturbances in metabolic processes, including insulin release and glucose metabolism. As AD is also called type III diabetes, diverse compounds having antidiabetic effects have been investigated as potential drugs for its symptomatic and disease-modifying treatment. In addition to insulin and oral antidiabetic drugs, scientific attention has been paid to cyclic-3',5'-adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) inhibitors that can modulate the concentration of glucose and related hormones and exert beneficial effects on memory, mood, and emotional processing. In this review, we present the most recent reports focusing on the involvement of cAMP-specific PDE4, PDE7, and PDE8 in glycemic and inflammatory response controls as well as the potential utility of the PDE inhibitors in the treatment of AD. Besides the results of in vitro and in vivo studies, the review also presents recent reports from clinical trials.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Doenças Neurodegenerativas , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Humanos , Inibidores de Fosfodiesterase/uso terapêutico , Pesquisa
13.
Curr Med Chem ; 28(9): 1731-1745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32338201

RESUMO

Alzheimer's disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3ß) plays a crucial role in the pathogenesis of AD. Moreover, GSK3ß inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3ß inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3ß inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.


Assuntos
Doença de Alzheimer , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Animais , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Ligantes , Memória
14.
Eur J Med Chem ; 209: 112854, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022582

RESUMO

Herein, we describe the rapid synthesis of a focused library of trisubstituted imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines from 2,4-dichloro-3-nitropyridine using the combination of solution-phase/solid-phase chemistry as new potential anti-inflammatory agents in the treatment of autoimmune diseases. Structure-activity relationship studies, followed by the structure optimization, provided hit compounds (17 and 28) which inhibited phosphodiesterase 4 (PDE4) with IC50 values comparable to rolipram and displayed different inhibitory potency against phosphodiesterase 7 (PDE7). Among them, compound 17 showed a beneficial effect in all the studied animal models of inflammatory and autoimmune diseases (concanavalin A-induced hepatitis, lipopolysaccharide-induced endotoxemia, collagen-induced arthritis, and MOG35-55-induced encephalomyelitis). In addition, compound 17 showed a favorable pharmacokinetic profile after intraperitoneal administration; it was characterized by a fast absorption from the peritoneal cavity and a relatively long terminal half-life in rats. It was found to penetrate brain barrier in mice. The performed experiments sheds light on the impact of PDE7A inhibition for the efficacy of PDE4 inhibitors in these disease conditions.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Imidazóis/uso terapêutico , Inflamação/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Piridinas/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacocinética , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacocinética , Inibidores de Fosfodiesterase/farmacologia , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos Wistar
15.
Eur J Med Chem ; 201: 112437, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673902

RESUMO

A library of novel anilide and benzylamide derivatives of ω-(4-(2-methoxyphenyl)piperazin-1-yl)alkanoic acids as combined 5-HT1A/5-HT7 receptor ligands and phosphodiesterase PDE4B/PDE7A inhibitors was designed using a structure-based drug design approach. The in vitro studies of 33 newly synthesized compounds (7-39) allowed us to identify 22 as the most promising multifunctional 5-HT1A/5-HT7 receptor antagonist (5-HT1AKi = 8 nM, Kb = 0.04 nM; 5-HT7Ki = 451 nM, Kb = 460 nM) with PDE4B/PDE7A inhibitory activity (PDE4B IC50 = 80.4 µM; PDE7A IC50 = 151.3 µM). Compound 22 exerted a very good ability to passively penetrate through biological membranes and a high metabolic stability in vitro. Moreover, the pharmacological evaluation of 22 showed its procognitive and antidepressant properties in rat behavioral tests. Compound 22 at a dose of 3 mg/kg (i.p.) significantly reversed MK-801-induced episodic memory deficits in the novel object recognition test, while at a dose of 10 mg/kg (i.p.) reduced the immobility time of animals (by about 34%) in the forced swimming test. The antidepressant-like effect produced by compound 22 was stronger than that of escitalopram used as a reference drug. This study opens a new perspective in the search for efficacious drugs for the treatment of cognitive and depressive disorders.


Assuntos
Anilidas/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Piperazinas/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Anilidas/síntese química , Anilidas/metabolismo , Animais , Células CHO , Fármacos do Sistema Nervoso Central/síntese química , Fármacos do Sistema Nervoso Central/metabolismo , Cricetulus , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Células HEK293 , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Teste de Campo Aberto/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/metabolismo , Piperazinas/síntese química , Piperazinas/metabolismo , Ligação Proteica , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo , Células Sf9 , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503342

RESUMO

Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832-a pan-PDE inhibitor, 869-a TRPA1 modulator, and 145-a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type ß1 (TGF-ß1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-ß pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Cálcio/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo
17.
Pharm Res ; 37(3): 37, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965335

RESUMO

There was a mistake in the unit of clearance (Cl) in Table II. In addition, the descriptions of V1(ROL) and V1(GRMS-55) were imprecise and the reference number in the footnote below this table should be (9). The corrected Table appears below.

18.
Pharm Res ; 37(2): 19, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31899535

RESUMO

PURPOSE: This study aimed to assess the activity of two phosphodiesterase (PDE) inhibitors, namely GRMS-55 and racemic lisofylline ((±)-LSF)) in vitro and in animal models of immune-mediated disorders. METHODS: Inhibition of human recombinant (hr)PDEs and TNF-alpha release from LPS-stimulated whole rat blood by the studied compounds were assessed in vitro. LPS-induced endotoxemia, concanavalin A (ConA)-induced hepatitis, and collagen-induced arthritis (CIA) animal models were used for in vivo evaluation. The potency of the investigated compounds was evaluated using PK/PD and PK/PD/disease progression modeling. RESULTS: GRMS-55 is a potent hrPDE7A and hrPDE1B inhibitor, while (±)-LSF most strongly inhibits hrPDE3A and hrPDE4B. GRMS-55 decreased TNF-alpha levels in vivo and CIA progression with IC50 of 1.06 and 0.26 mg/L, while (±)-LSF with IC50 of 5.80 and 1.06 mg/L, respectively. Moreover, GRMS-55 significantly ameliorated symptoms of ConA-induced hepatitis. CONCLUSIONS: PDE4B but not PDE4D inhibition appears to be mainly engaged in anti-inflammatory activity of the studied compounds. GRMS-55 and (±)-LSF seem to be promising candidates for future studies on the treatment of immune-related diseases. The developed PK/PD models may be used to assess the anti-inflammatory and anti-arthritic potency of new compounds for the treatment of rheumatoid arthritis and other inflammatory disorders.

19.
Curr Med Chem ; 27(32): 5351-5373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31250747

RESUMO

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by cognitive impairments such as memory loss, decline in language skills, and disorientation that affects over 46 million people worldwide. Patients with AD also suffer from behavioral and psychological symptoms of dementia that deteriorate their quality of life and lead to premature death. Currently available drugs provide modest symptomatic relief but do not reduce pathological hallmarks (senile plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of dementia. A large body of evidence indicates that impaired signaling pathways of cyclic-3',5'- Adenosine Monophosphate (cAMP) and cyclic-3',5'-guanosine Monophosphate (cGMP) may contribute to the development and progression of AD. In addition, Phosphodiesterase (PDE) inhibitors, commonly known as cAMP and/or cGMP modulators, were found to be involved in the phosphorylation of tau; aggregation of amyloid beta; neuroinflammation; and regulation of cognition, mood, and emotion processing. The purpose of this review was to update the most recent reports on the development of novel multifunctional ligands targeting PDE as potential drugs for both symptomatic and disease-modifying therapy of AD. This review collected the chemical structures of representative multifunctional ligands, results of experimental in vitro and in vivo pharmacological studies, and current opinions regarding the potential utility of these compounds for the comprehensive therapy of AD. Finally, the multiparameter predictions of drugability of the representative compounds were calculated and discussed.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Humanos , Ligantes , Diester Fosfórico Hidrolases , Qualidade de Vida
20.
Curr Med Chem ; 27(39): 6658-6681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31604406

RESUMO

Alzheimer's Disease (AD) is a chronic and progressive neurodegenerative disorder that affects over 46 million people worldwide. It is characterized by a decline in cognitive abilities, including memory and thinking skills. AD patients also suffer from behavioral and psychological symptoms of dementia of which depression is the most prevalent. Currently available drugs provide modest symptomatic relief and do not reduce pathological hallmarks (senile plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of AD. Studies suggest that AD is a type of diabetes manifested in the brain. Although AD and diabetes are currently classified as separate disease entities, they share common pathophysiological mechanisms, one of them is an increased level of cytokines involved in the inflammation and the regulation of metabolic, regenerative, and neural processes. The purpose of this review was to update the most recent reports on the discovery and development of antidiabetic agents as promising drugs for the symptomatic and diseasemodifying treatment of AD. We collected the results of in vitro and in vivo studies, and recent reports from clinical trials suggesting the utility of antidiabetic agents in memory-enhancing therapy of AD. Their beneficial effects on chronic neuroinflammation, pathological hallmarks, and neuropsychiatric symptoms co-occurring with cognitive deficits are also presented. Antidiabetic agents refer to the diabetic and inflammatory hypotheses of AD and provide hope to find an effective drug for comprehensive therapy of the disease.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...