Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 165794, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527719

RESUMO

Elevated environmental levels of elements originating from anthropogenic activities threaten natural communities and public health, as these elements can persist and bioaccumulate in the environment. However, their environmental risks and bioaccumulation patterns are often habitat-, species- and element-specific. We studied the bioaccumulation patterns of 11 elements in seven freshwater taxa in post-mining habitats in the Czech Republic, ranging from less polluted mining ponds to highly polluted fly ash lagoons. We found nonlinear, power-law relationships between the environmental and tissue concentrations of the elements, which may explain differences in bioaccumulation factors (BAF) reported in the literature. Tissue concentrations were driven by the environmental concentrations in non-essential elements (Al, As, Co, Cr, Ni, Pb and V), but this dependence was limited in essential elements (Cu, Mn, Se and Zn). Tissue concentrations of most elements were also more closely related to substrate than to water concentrations. Bioaccumulation was habitat specific in eight elements: stronger in mining ponds for Al and Pb, and stronger in fly ash lagoons for As, Cu, Mn, Pb, Se, V and Zn, although the differences were often minor. Bioaccumulation of some elements further increased in mineral-rich localities. Proximity to substrate, rather than trophic level, drove increased bioaccumulation levels across taxa. This highlights the importance of substrate as a pollutant reservoir in standing freshwaters and suggests that benthic taxa, such as molluscs (e.g., Physella) and other macroinvertebrates (e.g., Nepa), constitute good bioindicators. Despite the higher environmental risks in fly ash lagoons than in mining ponds, the observed ability of freshwater biota to sustain pollution supports the conservation potential of post-industrial sites. The power law approach used here to quantify and disentangle the effects of various bioaccumulation drivers may be helpful in additional contexts, increasing our ability to predict the effects of other contaminants and environmental hazards on biota.

2.
Sci Total Environ ; 900: 165803, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499824

RESUMO

Deposits of fly ash and other coal combustion wastes are common remnants of the energy industry. Despite their environmental risks from heavy metals and trace elements, they have been revealed as refuges for threatened terrestrial biodiversity. Surprisingly, freshwater biodiversity of fly ash sedimentation lagoons remains unknown despite such lack of knowledge strongly limits the efficient restoration of fly ash deposits. We bring the first comprehensive survey of freshwater biodiversity, including nekton, benthos, zooplankton, phytoplankton, and macrophytes, in fly ash lagoons across industrial regions of the Czech Republic. To assess their conservation potential, we compared their biodiversity with abandoned post-mining ponds, the known strongholds of endangered aquatic species in the region with a shortage of natural ponds. Of 28 recorded threatened species, 15 occurred in the studied fly ash lagoons, some of which were less abundant or even absent in the post-mining ponds. These are often species of nutrient-poor, fishless waters with rich vegetation, although some are specialised extremophiles. Species richness and conservation value of most groups in the fly ash lagoons did not significantly differ from the post-mining ponds, except for species richness of benthos, zooplankton, and macrophytes, which were slightly lower in the fly ash lagoons. Although the concentrations of some heavy metals (mainly Se, V, and As) were significantly higher in the fly ash lagoons, they did not significantly affect species richness or conservation value of the local communities. The differences in species composition therefore does not seem to be caused by water chemistry. Altogether, we have shown that fly ash lagoons are refuges for threatened aquatic species, and we thus suggest maintaining water bodies during site restoration after the cessation of fly ash deposition. Based on our analyses of environmental variables, we discuss suitable restoration practices that efficiently combine biodiversity protection and environmental risk reduction.


Assuntos
Cinza de Carvão , Metais Pesados , Biodiversidade , Ecossistema , Água Doce , Água
3.
Plants (Basel) ; 9(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438589

RESUMO

The deficiency of pollen grains for ovule fertilization can be the main factor limiting plant reproduction and fitness. Because of the ongoing global changes, such as biodiversity loss and landscape fragmentation, a better knowledge of the prevalence and predictability of pollen limitation is challenging within current ecological research. In our study we used pollen supplementation to evaluate pollen limitation (at the level of seed number and weight) in 22 plant species growing in a wet semi-natural meadow. We investigated the correlation between the pollen limitation index (PL) and floral traits associated with plant reproduction or pollinator foraging behavior. We recorded significant pollen limitation for approximately 41% of species (9 out of 22 surveyed). Seven species had a significant positive response in seed production and two species increased in seed weight after pollen supplementation. Considering traits, PL significantly decreased with the number of pollinator functional groups. The relationship of PL with other examined traits was not supported by our results. The causes of pollen limitation may vary among species with regard to (1) different reproductive strategies and life history, and/or (2) temporary changes in influence of biotic and abiotic factors at a site.

4.
Ecol Evol ; 10(4): 1784-1793, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128116

RESUMO

Plant-bird pollination interactions evolved independently on different continents. Specific adaptations can lead to their restriction when potential partners from distant evolutionary trajectories come into contact. Alternatively, these interactions can be enabled by convergent evolution and subsequent ecological fitting.We studied the interactions between New World plants from the genus Heliconia, Asian plants of genus Etlingera and African sunbirds on a local farm in Cameroon. Heliconia spp. evolved together with hummingbirds and Etlingera spp. with spiderhunters -an oriental subgroup of the sunbird family.Sunbirds fed on all studied plants and individual plant species were visited by a different sunbird spectrum. We experimentally documented a higher number of germinated pollen grains in sunbird-visited flowers of Etlingera spp. For Heliconia spp., this experiment was not successful and pollen tubes were rarely observed, even in hand-pollinated flowers, where enough pollen was deposited. The analyses of contacts with plant reproductive organs nevertheless confirmed that sunbirds are good pollen vectors for both Heliconia and Etlingera species.Our study demonstrated a high ecological fit between actors of distinct evolutionary history and the general validity of bird-pollination syndrome. We moreover show that trait matching and niche differentiation are important ecological processes also in semi-artificial plant-pollinator systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...