Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 663642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897677

RESUMO

Lignin is one of the most abundant natural resources that can be exploited for the bioproduction of value-added commodity chemicals. Oil palm empty fruit bunches (OPEFBs), byproducts of palm oil production, are abundant lignocellulosic biomass but largely used for energy and regarded as waste. Pretreatment of OPEFB lignin can yield a mixture of aromatic compounds that can potentially serve as substrates to produce commercially important chemicals. However, separation of the mixture into desired individual substrates is required, which involves expensive steps that undermine the utility of OPEFB lignin. Here, we report successful engineering of microbial hosts that can directly utilize heterogeneous mixtures derived from OPEFB lignin to produce commodity chemicals, adipic acid and levulinic acid. Furthermore, the corresponding bioconversion pathway was placed under a genetic controller to autonomously activate the conversion process as the cells are fed with a depolymerized OPEFB lignin mixture. This study demonstrates a simple, one-pot biosynthesis approach that directly utilizes derivatives of agricultural waste to produce commodity chemicals.

2.
Cell Syst ; 3(2): 133-143, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27559924

RESUMO

We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable.


Assuntos
Redes Reguladoras de Genes , Escherichia coli , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Glucose , Crescimento , Engenharia Metabólica , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...