Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Curr Res Food Sci ; 8: 100726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590692

RESUMO

This study reported an application of Au nanogap substrates for surface-enhanced Raman scattering (SERS) measurements to quantitatively analyze melamine and its derivative products at trace levels in pet liquid food (milk) combined with a waveband selection approach, namely variable importance in projection (VIP). Six different concentrations of melamine, cyanuric acid, and melamine combined with cyanuric acid were created, and SERS spectra were acquired from 550 to 1620cm-1. Detection was possible up to 200 pM for melamine-contaminated samples, and 400 pM concentration detection for other two groups. The VIP-PLSR models obtained correlation coefficient (R2) values of 0.997, 0.985, and 0.981, with root mean square error of prediction (RMSEP) values of 18.492 pM, 19.777 pM, and 15.124 pM for prediction datasets. Additionally, partial least square discriminant analysis (PLS-DA) was used to classify both pure and different concentrations of spiked samples. The results showed that the maximum classification accuracy for melamine was 100%, for cyanuric acid it was 96%, and for melamine coupled with cyanuric acid it was 95%. The results obtained clearly demonstrated that the Au nanogap substrate offers low-concentration, rapid, and efficient detection of hazardous additive chemicals in pet consuming liquid food.

2.
Food Sci Anim Resour ; 43(6): 1150-1169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969323

RESUMO

Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

3.
Front Plant Sci ; 14: 1240361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662162

RESUMO

The quality of tropical fruits and vegetables and the expanding global interest in eating healthy foods have resulted in the continual development of reliable, quick, and cost-effective quality assurance methods. The present review discusses the advancement of non-destructive spectral measurements for evaluating the quality of major tropical fruits and vegetables. Fourier transform infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (HSI) were used to monitor the external and internal parameters of papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect both spectral and spatial dimensions proved its efficiency in measuring external qualities such as grading 516 bananas, and defects in 10 mangoes and 10 avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques effectively assessed internal characteristics such as total soluble solids (TSS), soluble solid content (SSC), and moisture content (MC), with the exception of NIR, which was found to have limited penetration depth for fruits and vegetables with thick rinds or skins, including avocado, pineapple, and banana. The appropriate selection of NIR optical geometry and wavelength range can help to improve the prediction accuracy of these crops. The advancement of spectral measurements combined with machine learning and deep learning technologies have increased the efficiency of estimating the six maturity stages of papaya fruit, from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature concatenation of data developed by HSI and visible light. The presented findings in the technological advancements of non-destructive spectral measurements offer promising quality assurance for tropical fruits and vegetables.

4.
Front Plant Sci ; 14: 1167139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600204

RESUMO

Unlike standard chemical analysis methods involving time-consuming, labor-intensive, and invasive pretreatment procedures, Raman hyperspectral imaging (HSI) can rapidly and non-destructively detect components without professional supervision. Generally, the Kjeldahl methods and Soxhlet extraction are used to chemically determine the protein and lipid content of soybeans. This study is aimed at developing a high-performance model for estimating soybean protein and lipid content using a non-destructive Raman HSI. Partial least squares regression (PLSR) techniques were used to develop the model using a calibration model based on 70% spectral data, and the remaining 30% of the data were used for validation. The results indicate that the Raman HSI, combined with PLSR, resulted in a protein and lipid model Rp2 of 0.90 and 0.82 with Root Mean Squared Error Prediction (RMSEP) 1.27 and 0.79, respectively. Additionally, this study successfully used the Raman HSI approach to create a prediction image showing the distribution of the targeted components, and could predict protein and lipid based on a single seeds.

5.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299748

RESUMO

Melamine and its derivative, cyanuric acid, are occasionally added to pet meals because of their nitrogen-rich qualities, leading to the development of several health-related issues. A nondestructive sensing technique that offers effective detection must be developed to address this problem. In conjunction with machine learning and deep learning technique, Fourier transform infrared (FT-IR) spectroscopy was employed in this investigation for the nondestructive quantitative measurement of eight different concentrations of melamine and cyanuric acid added to pet food. The effectiveness of the one-dimensional convolutional neural network (1D CNN) technique was compared with that of partial least squares regression (PLSR), principal component regression (PCR), and a net analyte signal (NAS)-based methodology, called hybrid linear analysis (HLA/GO). The 1D CNN model developed for the FT-IR spectra attained correlation coefficients of 0.995 and 0.994 and root mean square error of prediction values of 0.090% and 0.110% for the prediction datasets on the melamine- and cyanuric acid-contaminated pet food samples, respectively, which were superior to those of the PLSR and PCR models. Therefore, when FT-IR spectroscopy is employed in conjunction with a 1D CNN model, it serves as a potentially rapid and nondestructive method for identifying toxic chemicals added to pet food.


Assuntos
Aprendizado Profundo , Espectroscopia de Infravermelho com Transformada de Fourier , Contaminação de Alimentos/análise
6.
Insects ; 14(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37367339

RESUMO

This study proposes a deep-learning-based system for detecting and classifying Scirtothrips dorsalis Hood, a highly invasive insect pest that causes significant economic losses to fruit crops worldwide. The system uses yellow sticky traps and a deep learning model to detect the presence of thrips in real time, allowing farmers to take prompt action to prevent the spread of the pest. To achieve this, several deep learning models are evaluated, including YOLOv5, Faster R-CNN, SSD MobileNetV2, and EfficientDet-D0. EfficientDet-D0 was integrated into the proposed smartphone application for mobility and usage in the absence of Internet coverage because of its smaller model size, fast inference time, and reasonable performance on the relevant dataset. This model was tested on two datasets, in which thrips and non-thrips insects were captured under different lighting conditions. The system installation took up 13.5 MB of the device's internal memory and achieved an inference time of 76 ms with an accuracy of 93.3%. Additionally, this study investigated the impact of lighting conditions on the performance of the model, which led to the development of a transmittance lighting setup to improve the accuracy of the detection system. The proposed system is a cost-effective and efficient alternative to traditional detection methods and provides significant benefits to fruit farmers and the related ecosystem.

7.
Insects ; 14(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37367342

RESUMO

Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field.

8.
Sensors (Basel) ; 23(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177412

RESUMO

Mercury bromide (Hg2Br2) has been used to develop acousto-optic tunable filters (AOTFs) because it has several advantages, including a high refractive index, a broad optical bandwidth, and a relatively high figure of merit. Therefore, the measurement of its birefringence is a highly important factor for ensuring AOTF quality. However, for single crystals, it is difficult (at the millimeter scale) to quantify the birefringence using an ellipsometer, as this equipment is only designed to conduct measurements on thin films. In this study, a simple birefringence measurement system for Hg2Br2 was developed based on Brewster's angle at the millimeter scale. The planar distributions of the Hg2Br2 crystal along the (100), (010), and (001) planes were used in the experiments. The developed measurement system can measure the reflected light intensity of the Hg2Br2 crystal depending on the incidence angles (rotations at 0.01125° steps) and can calculate the ordinary and extraordinary refractive indices and birefringence. The calculated birefringence of the Hg2Br2 crystal was 0.8548; this value exhibits an error of 0.64% compared with a value of 0.86 reported in the literature. The developed measurement system demonstrates the ability to be used to evaluate the quality of birefringent single crystals.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122734, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080052

RESUMO

Conventional spectroscopic methods like IR, and Raman are not very effective at detecting low levels of pesticides or harmful chemicals in food matrices. A quick, highly accurate approach that can identify pesticides present in different food products at lower levels must be developed in order to address this problem and ensure food safety. In this study, a highly sensitive and uniform wafer-scale Au nanogap surface-enhanced Raman spectroscopy (SERS) substrate was used for the quantitative analysis of carbaryl pesticide levels in standard solution, mango juice, and milk samples using chemometrics. Carbaryl was detected up to 3 ppb concentration levels for all three group of samples. However, due to the higher sensitivity, uniformity, and enhancement factors of the SERS substrate used in this investigation, the limit of detection (LOD) values for the standard solution, mango juice, and milk were 0.37 ppb, 0.57 ppb, and 0.15 ppb at 1380 cm-1, 1380 cm-1, and 1364 cm-1 wavenumber ranges. In order to predict different carbaryl concentrations (1, 2, 3, 4, and 5 ppb), the variable importance in projection (VIP) method combined with partial least squares regression (PLSR) and attained the coefficient of determination (R2) values of 0.994, 0.989, and 0.978 along with minimum root mean square error (RMSE) values of 0.112, 0.190, and 0.278 ppb for the prediction datasets. Furthermore, PLS-DA was able to distinguish between pure and adulterated samples with the highest classification accuracy of 100 % for a standard solution, and mango juice and 94.4 % for milk samples. Considering this, we can conclude that the SERS Au Nanogap substrate can rapidly and effectively detect carbaryl pesticides quantitatively and qualitatively in mango juice and milk.


Assuntos
Praguicidas , Animais , Praguicidas/análise , Carbaril/análise , Leite/química , Análise Espectral Raman/métodos , Inocuidade dos Alimentos , Ouro/química
10.
Plants (Basel) ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987075

RESUMO

The efficiency of photosynthesis in strawberry plants is measured to maintain the quality and quantity of strawberries produced. The latest method used to measure the photosynthetic status of plants is chlorophyll fluorescence imaging (CFI), which has the advantage of obtaining plant spatiotemporal data non-destructively. This study developed a CFI system to measure the maximum quantum efficiency of photochemistry (Fv/Fm). The main components of this system include a chamber for plants to adapt to dark environments, blue LED light sources to excite the chlorophyll in plants, and a monochrome camera with a lens filter attached to capture the emission spectra. In this study, 120 pots of strawberry plants were cultivated for 15 days and divided into four treatment groups: control, drought stress, heat stress, and a combination of drought and heat stress, resulting in Fv/Fm values of 0.802 ± 0.0036, 0.780 ± 0.0026, 0.768 ± 0.0023, and 0.749 ± 0.0099, respectively. A strong correlation was found between the developed system and a chlorophyll meter (r = 0.75). These results prove that the developed CFI system can accurately capture the spatial and temporal dynamics resulting from the response of strawberry plants to abiotic stresses.

11.
Front Plant Sci ; 14: 1109060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818876

RESUMO

Root rot of Panax ginseng caused by Cylindrocarpon destructans, a soil-borne fungus is typically diagnosed by frequently checking the ginseng plants or by evaluating soil pathogens in a farm, which is a time- and cost-intensive process. Because this disease causes huge economic losses to ginseng farmers, it is important to develop reliable and non-destructive techniques for early disease detection. In this study, we developed a non-destructive method for the early detection of root rot. For this, we used crop phenotyping and analyzed biochemical information collected using the HSI technique. Soil infected with root rot was divided into sterilized and infected groups and seeded with 1-year-old ginseng plants. HSI data were collected four times during weeks 7-10 after sowing. The spectral data were analyzed and the main wavelengths were extracted using partial least squares discriminant analysis. The average model accuracy was 84% in the visible/near-infrared region (29 main wavelengths) and 95% in the short-wave infrared (19 main wavelengths). These results indicated that root rot caused a decrease in nutrient absorption, leading to a decline in photosynthetic activity and the levels of carotenoids, starch, and sucrose. Wavelengths related to phenolic compounds can also be utilized for the early prediction of root rot. The technique presented in this study can be used for the early and timely detection of root rot in ginseng in a non-destructive manner.

12.
Animals (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36830438

RESUMO

Recently, many slaughterhouses have begun to introduce automation and quality evaluation sensing equipment to the slaughter processing line to overcome insufficient human resources, improve the efficiency of the slaughter process, and standardize meat quality. Various processing instruments and sensing technologies may be used depending on the livestock to be slaughtered, but a standardized process design for a smart slaughterhouse remains to be established. Slaughterhouses are becoming more industrialized, leveraging data collection and analysis to drive growth and increase production. Therefore, slaughterhouse automation is essential for meeting production demand, and an optimized design suitable for the size of each company is required to maximize economical equipment and systems. We introduce robot technology used in the slaughterhouse and detail the visceral laparotomy, carcass preprocessing, and deboning robot technology. In this study, we examine slaughterhouse automation equipment and technologies, focusing on optimizing the processing lines, the direction of application, and the hygiene of robot technique. We hope this review will provide insight into slaughterhouse automation for decision making in the slaughter industry.

13.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560195

RESUMO

Environmental pressures, such as temperature and light intensity, food, and genetic factors, can cause chicken eggs to develop abnormalities. The common types of internal egg abnormalities include bloody and damaged egg yolk. Spectrometers have been recently used in real-time abnormal egg detection research. However, there are very few studies on the optimization of measurement systems. This study aimed to establish optimum parameters for detecting of internal egg abnormalities (bloody and damaged-yolk eggs) using visible and near-infrared (Vis/NIR) spectrometry (192-1110 nm range) and multivariate data analysis. The detection performance using various system parameters, such as the types of light sources, the configuration of the light, and sensor positions, was investigated. With the help of collected data, a partial least-squares discriminant analysis (PLS-DA) model was developed to classify normal and abnormal eggs. The highest classification accuracy for the various system parameters was 98.7%. Three band selection methods, such as weighted regression coefficient (WRC), sequential feature selection (SFS), and successive projection algorithm (SPA) were used for further model optimization, to reduce the spectral bands from 1028 to less than 7. In conclusion the results indicate that the types of light sources and the configuration design of the sensor and illumination affect the detection accuracy for abnormal eggs.


Assuntos
Galinhas , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ovos/análise , Gema de Ovo , Análise Discriminante , Análise dos Mínimos Quadrados
14.
Front Plant Sci ; 13: 986754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420027

RESUMO

The viability status of seeds before sowing is important to farmers as it allows them to make yield predictions. Monitoring the seed quality in a rapid and nondestructive manner may create a perfect solution, especially for industrial sorting applications. However, current offline laboratory-based strategies employed for the monitoring of seed viability are time-consuming and thus cannot satisfy industrial needs where there is a substantial number of seeds to be analyzed. In this study, we describe a prototype online near-infrared (NIR) hyperspectral imaging system that can be used for the rapid detection of seed viability. A wavelength range of 900-1700 nm was employed to obtain spectral images of three different varieties of naturally aged watermelon seed samples. The partial least square discriminant analysis (PLS-DA) model was employed for real-time viability prediction for seed samples moving through a conveyor unit at a speed of 49 mm/sec. A suction unit was further incorporated to develop the online system and it was programmatically controlled to separate the detected viable seeds from nonviable ones. For an external validation sample set showed classification accuracy levels of 91.8%, 80.7%, and 77.8% in relation to viability for the three varieties of watermelon seed with healthy seedling growth. The regression coefficients of the classification model distinguished some chemical differences in viable and nonviable seed which was verified by the chromatographic analysis after the detection of the proposed online system. The results demonstrated that the developed online system with the viability prediction model has the potential to be used in the seed industry for the quality monitoring of seeds.

15.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433302

RESUMO

Strawberry (Fragaria × ananassa Duch) plants are vulnerable to climatic change. The strawberry plants suffer from heat and water stress eventually, and the effects are reflected in the development and yields. In this investigation, potential chlorophyll-fluorescence-based indices were selected to detect the early heat and water stress in strawberry plants. The hyperspectral images were used to capture the fluorescence reflectance in the range of 500 nm-900 nm. From the hyperspectral cube, the region of interest (leaves) was identified, followed by the extraction of eight chlorophyll-fluorescence indices from the region of interest (leaves). These eight chlorophyll-fluorescence indices were analyzed deeply to identify the best indicators for our objective. The indices were used to develop machine-learning models to assess the performance of the indicators by accuracy assessment. The overall procedure is proposed as a new workflow for determining strawberry plants' early heat and water stress. The proposed workflow suggests that by including all eight indices, the random-forest classifier performs well, with an accuracy of 94%. With this combination of the potential indices, namely the red-edge vegetation stress index (RVSI), chlorophyll B (Chl-b), pigment-specific simple ratio for chlorophyll B (PSSRb), and the red-edge chlorophyll index (CIREDEDGE), the gradient-boosting classifier performs well, with an accuracy of 91%. The proposed workflow works well with a limited number of training samples which is an added advantage.


Assuntos
Desidratação , Fragaria , Temperatura Alta , Fluorescência , Clorofila
16.
Front Plant Sci ; 13: 963591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105710

RESUMO

This study demonstrates a method to select wavelength-specific spectral resolutions to optimize a line-scan hyperspectral imaging method for its intended use, which in this case was visible/near-infrared imaging-based multiple-waveband detection of apple bruises. Many earlier studies have explored important aspects of developing apple bruise detection systems, such as key wavelengths and image processing algorithms. Despite the endeavors of many, development of a real-time bruise detection system is not yet a simple task. To overcome these problems, this study investigated selection of optimal wavelength-specific spectral resolutions for detecting bruises on apples by using hyperspectral line-scan imaging with the Random Track function for non-contiguous partial readout, with two experimental parts. The first part identified key-wavelengths and the optimal number of key-wavelengths to use for detecting low-, medium-, and high-impact bruises on apples. These parameters were determined by principal component analysis (PCA) and sequential forward selection (SFS) with four classification methods. The second part determined the optimal spectral resolution for each of the key-wavelengths by selecting and evaluating 21 combinations of exposure time and key-wavelength bandwidths, and then selecting the best combination based on the bruise detection accuracies achieved by each classification method. Each of the four classification methods was found to have a different optimized resolution for high accuracy bruise detection, and the optimized resolutions also allowed for use of shorter exposure times. The results of this work can be used to help develop multispectral imaging systems that provide rapid, cost-effective post-harvest processing to identify bruised apples on commercial processing lines.

17.
Front Plant Sci ; 13: 982247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119609

RESUMO

Quantifying the phenolic compounds in plants is essential for maintaining the beneficial effects of plants on human health. Existing measurement methods are destructive and/or time consuming. To overcome these issues, research was conducted to develop a non-destructive and rapid measurement of phenolic compounds using hyperspectral imaging (HSI) and machine learning. In this study, the Arabidopsis was used since it is a model plant. They were grown in controlled and various stress conditions (LED lights and drought). Images were captured using HSI in the range of 400-1,000 nm (VIS/NIR) and 900-2,500 nm (SWIR). Initially, the plant region was segmented, and the spectra were extracted from the segmented region. These spectra were synchronized with plants' total phenolic content reference value, which was obtained from high-performance liquid chromatography (HPLC). The partial least square regression (PLSR) model was applied for total phenolic compound prediction. The best prediction values were achieved with SWIR spectra in comparison with VIS/NIR. Hence, SWIR spectra were further used. Spectral dimensionality reduction was performed based on discrete cosine transform (DCT) coefficients and the prediction was performed. The results were better than that of obtained with original spectra. The proposed model performance yielded R 2-values of 0.97 and 0.96 for calibration and validation, respectively. The lowest standard errors of predictions (SEP) were 0.05 and 0.07 mg/g. The proposed model out-performed different state-of-the-art methods. These demonstrate the efficiency of the model in quantifying the total phenolic compounds that are present in plants and opens a way to develop a rapid measurement system.

18.
Plants (Basel) ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406816

RESUMO

The increasing interest in plant phenolic compounds in the past few years has become necessary because of their several important physicochemical properties. Thus, their identification through non-destructive methods has become crucial. This study carried out comparative non-destructive measurements of Arabidopsis thaliana leaf powder sample phenolic compounds using Fourier-transform infrared and near-infrared spectroscopic techniques under six distinct stress conditions. The prediction analysis of 600 leaf powder samples under different stress conditions (LED lights and drought) was performed using PLSR, PCR, and NAS-based HLA/GO regression analysis methods. The results obtained through FT-NIR spectroscopy yielded the highest correlation coefficient (Rp2) value of 0.999, with a minimum error (RMSEP) value of 0.003 mg/g, based on the PLSR model using the MSC preprocessing method, which was slightly better than the correlation coefficient (Rp2) value of 0.980 with an error (RMSEP) value of 0.055 mg/g for FT-IR spectroscopy. Additionally, beta coefficient plots present spectral differences and the identification of important spectral signatures sensitive to the phenolic compounds in the measured powdered samples. Thus, the obtained results demonstrated that FT-NIR spectroscopy combined with partial least squares regression (PLSR) and suitable preprocessing method has a solid potential for non-destructively predicting phenolic compounds in Arabidopsis thaliana leaf powder samples.

19.
Front Plant Sci ; 13: 847225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251113

RESUMO

Watermelon (Citrullus lanatus) is a widely consumed, nutritious fruit, rich in water and sugars. In most crops, abiotic stresses caused by changes in temperature, moisture, etc., are a significant challenge during production. Due to the temperature sensitivity of watermelon plants, temperatures must be closely monitored and controlled when the crop is cultivated in controlled environments. Studies have found direct responses to these stresses include reductions in leaf size, number of leaves, and plant size. Stress diagnosis based on plant morphological features (e.g., shape, color, and texture) is important for phenomics studies. The purpose of this study is to classify watermelon plants exposed to low-temperature stress conditions from the normal ones using features extracted using image analysis. In addition, an attempt was made to develop a model for estimating the number of leaves and plant age (in weeks) using the extracted features. A model was developed that can classify normal and low-temperature stress watermelon plants with 100% accuracy. The R2, RMSE, and mean absolute difference (MAD) of the predictive model for the number of leaves were 0.94, 0.87, and 0.88, respectively, and the R2 and RMSE of the model for estimating the plant age were 0.92 and 0.29 weeks, respectively. The models developed in this study can be utilized in high-throughput phenotyping systems for growth monitoring and analysis of phenotypic traits during watermelon cultivation.

20.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270921

RESUMO

Ensuring the quality of fresh-cut vegetables is the greatest challenge for the food industry and is equally as important to consumers (and their health). Several investigations have proven the necessity of advanced technology for detecting foreign materials (FMs) in fresh-cut vegetables. In this study, the possibility of using near infrared spectral analysis as a potential technique was investigated to identify various types of FMs in seven common fresh-cut vegetables by selecting important wavebands. Various waveband selection methods, such as the weighted regression coefficient (WRC), variable importance in projection (VIP), sequential feature selection (SFS), successive projection algorithm (SPA), and interval PLS (iPLS), were used to investigate the optimal multispectral wavebands to classify the FMs and vegetables. The application of selected wavebands was further tested using NIR imaging, and the results showed good potentiality by identifying 99 out of 107 FMs. The results indicate the high applicability of the multispectral NIR imaging technique to detect FMs in fresh-cut vegetables for industrial application.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Verduras , Algoritmos , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...